Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aghili, F.: A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: Applications to control and simulation. IEEE Transactions on Robotics 21(5), 834–849 (2005)
Ben-Israel, A., Greville, T.: Generalized inverses: theory and applications. Springer-Verlag New-York Inc. (2003)
Hyon, S., Hale, J.G., Cheng, G.: Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces. IEEE Trans. on Robotics 23(5), 884–898 (2007)
Jiang, W.Y., Liu, A.M., Howard, D.: Optimization of legged robot locomotion by control of foot-force distribution. Transactions of the Institute of Measurement and Control 26(4), 311–323 (2004)
Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.: Learning, planning, and control for quadruped locomotion over challenging terrain. International Journal of Robotics Research 30, 236–258 (2011)
Klein, C., Kittivatcharapong, S.: Optimal force distribution for the legs of a walking machine with friction cone constraints. IEEE Transactions on Robotics and Automation 6(1), 73–85 (1990)
Mistry, M., Buchli, J., Schaal, S.: Inverse dynamics control of floating base systems using orthogonal decomposition. In: Proc. of the 2010 International Conference on Robotics and Automation (2010)
Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.: Optimal distribution of contact forces with inverse dynamics control (submitted)
Righetti, L., Buchli, J., Mistry, M., Schaal, S.: Control of legged robots with optimal distribution of contact forces. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 318–324 (2011)
Righetti, L., Buchli, J., Mistry, M., Schaal, S.: Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), pp. 1085–1090 (2011)
Sentis, L.: Synthesis and control of whole-body behaviors in humanoid systems. Ph.D. thesis, Stanford University (2007)
Sentis, L., Park, J., Khatib, O.: Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Transactions on Robotics 26(3), 483–501 (2010)
Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing. Springer, London (2009), doi:10.1007/978-1-84628-642-1
Stephens, B., Atkeson, C.: Dynamic balance force control for compliant humanoid robots. In: International Conference on Intelligent Robots and Systems, IROS (2010)
Udwadia, F., Kalaba, R.: On the foundations of analytical dynamics. Int. J. of Non-Linear Mechanics 37, 1079–1090 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S. (2013). Using Torque Redundancy to Optimize Contact Forces in Legged Robots. In: Milutinović, D., Rosen, J. (eds) Redundancy in Robot Manipulators and Multi-Robot Systems. Lecture Notes in Electrical Engineering, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33971-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-33971-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33970-7
Online ISBN: 978-3-642-33971-4
eBook Packages: EngineeringEngineering (R0)