Skip to main content

Synthesizing Redundancy Resolution Criteria of the Human Arm Posture in Reaching Movements

  • Chapter

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 57)

Abstract

The aim of this work is to characterize the regularity and variability of human arm movements. The arm posture is quantified by a swivel angle that is experimentally measured when a healthy subject is reaching for targets in a spherical workspace. It is shown that without specific instruction, a subject moving his/her arm tends to use a consistent arm posture with small variations when reaching the same target position, regardless of whether the subject is moving toward or away from the target. This observed posture consistency indicates that human motor control chooses a unique arm posture associated to a 3D hand position. From the perspective of posture consistency, this work further examines the posture predictions based on two hypotheses on human arm control strategies: one that maximizes the movement efficiency towards the head, particularly toward the mouth; and the other that minimizes the power consumption in joint space. The arm posture predictions based on these two control strategies are compared and the prediction errors for each control strategy are analyzed.

Keywords

  • Joint Torque
  • Task Space
  • Wrist Position
  • Virtual Target
  • Posture Consistency

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-33971-4_12
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-33971-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles, J., Lopez-Cajun, C.S.: Kinematic isotropy and the conditioning index of serial robotic manipulators. Int. J. Robotics Research 11(6), 560–571 (1992)

    CrossRef  Google Scholar 

  2. Angeles, J., Park, F.C.: Performance evaluation and design criteria. In: Siciliano, B., Khatib, O. (eds.) A Handbook of Robotics, 1st edn. Springer Handbook of Robotics, pp. 229–244 (2008)

    Google Scholar 

  3. Asada, H., Granito, J.: Kinematic and static characterization of wrist joints and their optimal design. In: Proc. 1985 Int. Conf. Robot. Automat., St. Louis, Missouri, pp. 244–250 (March 1985)

    Google Scholar 

  4. Badler, N.I., Tolani, D.: Real-time inverse kinematics of the human arm. Presence 5(4), 393–401 (1996)

    Google Scholar 

  5. Bernstein, N.A.: The coordination and regulation of movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  6. Bicchi, A.: On the mobility and manipulability of general multiple limb robots. IEEE Journal of Robotics and Automation 11(2), 215–228 (1995)

    CrossRef  Google Scholar 

  7. Boullion, T.L., Odell, P.L.: Generalized inverse matrices. Wiley-Interscience (1971)

    Google Scholar 

  8. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn., ch.1. Prentice Hall (2003)

    Google Scholar 

  9. Desmurget, M., Grea, H., Prablanc, C.: Final posture of the upper limb depends on the initial position of the hand during prehension movements. Current Biology 119(4), 511–516 (1998)

    Google Scholar 

  10. Dum, R., Strick, P.: Motor Areas in the frontal Lobe:The Anatomical Substrate for the Central Control of Movement. In: Motor Cortex in Voluntary Movements. CRC Press (2005)

    Google Scholar 

  11. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neurophysiology 5, 1688–1703 (1985)

    Google Scholar 

  12. Motion Genesis. Autolev

    Google Scholar 

  13. Gordon, J., Ghilardi, M.F., Ghez, C.: Accuracy of planar reaching movements. Experimental Brain Research 99(1), 97–111 (1994)

    CrossRef  Google Scholar 

  14. Gosselin, C.M., Angeles, J.: A new performance index for the kinematic optimization of robotic manipulator. In: Proc. ASME Mec. Conf., Kissimmee, FL, pp. 441–447 (1988)

    Google Scholar 

  15. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 194, 780–784 (1998)

    CrossRef  Google Scholar 

  16. Harwood, M.R., Mezey, L.E., Harris, C.M.: The spectral main sequence of human saccades. Journal of Neurophysiology, 19

    Google Scholar 

  17. Haustein, W.: Considerations on listing’s law and the primary position by means of a matrix description of eye position control. Biological Cybernetics 60(6), 411–420 (1989)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Hermens, F., Gielen, S.: Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements. Experimental Brain Research 159(3), 340–348 (2004)

    CrossRef  Google Scholar 

  19. Hogan, N.: An organizing principle for a class of voluntary movements. Journal of Neuroscience 4(2), 2745–2754 (1984)

    MathSciNet  Google Scholar 

  20. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  21. Kang, T., He, J., Helms Tillery, S.I.: Determining natural arm configuration along a reaching trajectory. Exp. Brain Res. 167, 352–361 (2005)

    CrossRef  Google Scholar 

  22. Kawato, M.: Bidirectional theory approach to integration. In: Inui, T., McClelland, J.L. (eds.) Attention and Performance XVI: Information Integration in Perception and Communication, pp. 335–367. The MIT Press, Cambridge (1996)

    Google Scholar 

  23. Kim, H., Li, Z., Milutinovic, D., Rosen, J.: Resolving the redundancy of a seven dof wearable robotic system based on kinematic and dynamic constraint. In: ICRA, St. Paul, Minnesota, USA (2012)

    Google Scholar 

  24. Kim, H., Miller, L., Rosen, J.: Redundancy resolution of a human arm for controlling a seven dof wearable robotic system. In: IEEE International Conference on EMBC, Boston, USA, August 30-September 3 (2011)

    Google Scholar 

  25. Krebs, H.I., Ferraro, M., Buerger, S. P., Newbery, M.J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., Hogan, N.: Rehabilitation robotics: pilot trial of a spatial extension for mit-manus. J. Neuro Engineering & Rehabilitation (October 2004)

    Google Scholar 

  26. Li, Z., Latash, M.L., Zatsiorsky, V.M.: Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119

    Google Scholar 

  27. Li, Z., Glozman, D., Milutinovic, D., Rosen, J.: Maximizing dexterous workspace and optimal port placement of a multi-arm surgical robot. In: Proc. IEEE Int. Conf. on Robotics and Automation, Shanghai, China, pp. 3394–3399 (May 2011)

    Google Scholar 

  28. Maciejewski, A.A.: Dealing wit the ill-conditioned equations of motion for articulated figures. In: IEEE Computer Graphics and Applications, pp. 63–71 (1990)

    Google Scholar 

  29. Medendorp, W.P., Crawford, J.D., Henriques, D.Y.P., Van Gisbergen, J.A.M., Gielen, C.C.A.M.: Kinematic strategies for upper armc̈forearm coordination in three dimensions. J. Neurophysiology 84(5), 2302–2316 (2000)

    Google Scholar 

  30. Aerospace medical research laboratory. Investigation of inertial properties of human body. Technical report (March 1975)

    Google Scholar 

  31. Messier, J., Kalaska, J.F.: Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research 125(2), 139–152 (1999)

    CrossRef  Google Scholar 

  32. Miller, L.M., Rosen, J.: Comparison of multi-sensor admittance control in joint space and task space for a seven degree of freedom upper limb exoskeleton. In: Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, pp. 26–29 (September 2010)

    Google Scholar 

  33. Graziano, M.S., Tylor, C.S., Moore, T.: Complex movements evoked by micro stimulation of precentral cortex. Neuron 30, 34(5), 841–851 (2002)

    Google Scholar 

  34. Muller, H., Sternad, D.: Motor learning: changes in the structure of variability in a redundant task. Advances in Experimental Medicine and Biology, Progress in Motor Control 629, 439–456 (2009)

    CrossRef  Google Scholar 

  35. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model. The Journal of Neurophysiology 81(5), 2140–2155 (1999)

    Google Scholar 

  36. Nelson, W.L.: Physical principles for economies of skilled movements. Biological Cybernetics, 46

    Google Scholar 

  37. Pandy, M.G., Garner, B.A., Anderson, F.C.: Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. Journal of Neurophysiology 117

    Google Scholar 

  38. Perry, J.C., Rosen, J.: Design of a 7 degree-of-freedom upper-limb powered exoskeleton. In: IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy (February 2006)

    Google Scholar 

  39. Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. Mechatronics 12(4), 408–417 (2007)

    Google Scholar 

  40. Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. Mechatronics 12(4), 408–417 (2007)

    Google Scholar 

  41. Roberts, S.L., Falkenberg, S.K.: Biomechanics: Problem Solving for Functional Activity. St. Louis, Mosby (1992)

    Google Scholar 

  42. Rosenbaum, D.A.: Human Motor Control. Academic Press (1990)

    Google Scholar 

  43. Rosenbaum, D.A., Meulenbroek, R.J., Vaughan, J., Jansen, C.: Posture-based motion planning: applications to grasping. Psychological Review 108(4), 709–734 (2001)

    CrossRef  Google Scholar 

  44. Sabes, P.N., Jordan, M.I., Wolpert, D.M.: The role of inertial sensitivity in motor planning. Journal of Neuroscience, 18

    Google Scholar 

  45. Saha, S.K.: Introduction to Robotics. Tata McGraw-Hill Publishing Company Limited (2008)

    Google Scholar 

  46. Schaal, S., Sternad, D.: Origins and violations of the 2/3 power law in rhythmic 3d movements. Experimental Brain Research 136, 60–72 (2001)

    CrossRef  Google Scholar 

  47. Schmidt, R.A., Zelaznik, H., Hawkins, B., Frank, J.S., Quinn, J.T.: Motor-output variability: a theory for the accuracy of rapid motor acts. Psychology Review, 47

    Google Scholar 

  48. Scholz, J.P., Schoner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research 126(3), 289–306 (1999)

    CrossRef  Google Scholar 

  49. Scholz, J.P., Schoner, G., Latash, M.L.: Identifying the control structure of multijoint coordination during pistol shooting. Experimental Brain Research 135(3), 382–404 (2000)

    CrossRef  Google Scholar 

  50. Sciavicco, L.: A dynamic solution to the inverse kinematic problem for redundant manipulators. In: ICRA, vol. 4, pp. 1081–1087 (March 1987)

    Google Scholar 

  51. Sciavicco, L.: A solution algorithm to the inverse kinematic problem for redundant manipulators. IEEE Journal of Robotics and Automation 4(4), 403–410 (1988)

    CrossRef  Google Scholar 

  52. Smeets, J.B., Brenner, E.: A new view on grasping. Motor Control 3, 237–271 (1999)

    Google Scholar 

  53. Soechting, J.F., Buneo, C.A., Herrmann, U., Flanders, M.: Moving effortlessly in three dimensions: does donders’ law apply to arm movement? J. Neuroscience 15(9), 6271–6280 (1995)

    Google Scholar 

  54. Soechting, J.F., Flanders, M.: Parallel, interdependent channels for location and orientation in sensorimotor transformations for reaching and grasping. Journal of Neurophysiology 70(3), 1137–1150 (1993)

    Google Scholar 

  55. Sutton, G.G., Sykes, K.: The variation of hand tremor with force in healthy subjects. Journal of Physiology, 191

    Google Scholar 

  56. Terzuoloa, C.A., Viviania, P.: Determinants and characteristics of motor patterns used for typing. Journal of Neuroscience 5, 431–437 (1982)

    Google Scholar 

  57. Tillery, S.I., Ebner, T.J., Soechting, J.F.: Task dependence of primate arm postures. Experimental. Brain Researchy 104(1), 1–11 (1995)

    Google Scholar 

  58. Todorov, E.: Cosine tuning minimizes motor errors. Neural Computation 14

    Google Scholar 

  59. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5, 1226–1235 (2002)

    CrossRef  Google Scholar 

  60. Todorov, E., Jordan, M.I.: Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. Journal of Neuroscience 880, 696–714 (1998)

    Google Scholar 

  61. Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models and Image Processing 62(5), 353–388 (2000)

    MATH  Google Scholar 

  62. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement - minimum torque-change model. Biology Cybernetics 61, 89–101 (1989)

    Google Scholar 

  63. Vaillancourt, D.E., Newell, K.M.: movement variability and theories of motor control. In: Latash, M., Zatsiorsky, V. (eds.) Classics in Movement Sceience, pp. 409–435. Human Kinetics (2001)

    Google Scholar 

  64. Viviani, P., Terzuolo, C.: Trajectory determines movement dynamics. Journal of Neuroscience 7, 431–437 (1982)

    CrossRef  Google Scholar 

  65. Wada, Y., Kaneko, Y., Nakano, E., Osu, R., Kawato, M.: Quantitative examinations for multi joint arm trajectory planningusing a robust calculation algorithm of the minimum commanded torque change trajectory. Journal of Neural Networks 14, 381–393 (2001)

    CrossRef  Google Scholar 

  66. Woodworth, R.S.: The Accuracy of Voluntary Movement. The Macmillan Company (1899)

    Google Scholar 

  67. Yoshikawa, T.: Dynamic manipulability of robot manipulators. In: Proc. Int. Conf. Robot. Automat., St. Louis, Missouri, pp. 1033–1038 ( March 1985)

    Google Scholar 

  68. Yoshikawa, T.: Foundations of Robotics: Analysis and Control. The MIT Press (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Z., Kim, H., Milutinović, D., Rosen, J. (2013). Synthesizing Redundancy Resolution Criteria of the Human Arm Posture in Reaching Movements. In: Milutinović, D., Rosen, J. (eds) Redundancy in Robot Manipulators and Multi-Robot Systems. Lecture Notes in Electrical Engineering, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33971-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33971-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33970-7

  • Online ISBN: 978-3-642-33971-4

  • eBook Packages: EngineeringEngineering (R0)