Skip to main content

Individual Control of Redundant Skeletal Muscles Using an Exoskeleton Robot

  • Chapter
Redundancy in Robot Manipulators and Multi-Robot Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 57))

Abstract

Individual muscle control involves the use of an exoskeleton to induce specific muscle activation patterns during the wearer’s voluntary movement. A pneumatically powered wearable exoskeleton has been developed for the upper extremities. It is comprised of multiple pneumatic artificial muscles, force transducers, and custom-designed software that utilize a musculoskeletal model to predict and modify the wearer’s muscle activities (e.g. activation level, torque). The interaction with such a wearable robot induces muscle activities thatmay not be achieved in the standard exercise environment. The software uses a computational algorithm to plan an adequate motor-task by modeling not only a complex coupling between multiplemuscles and joints, but also the optimization principle in the neuromuscular system that coordinates redundant muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D.P.: Nonlinear programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  2. Biel, A.: Trail guide to the body: How to locate muscles, bones and more. Andrew Biel (1997)

    Google Scholar 

  3. van Bolhuis, B., Gielen, C.: A comparison of models explaining muscle activation patterns for isometric contractions. Biological Cybernetics 81(3), 249–261 (1999)

    Article  MATH  Google Scholar 

  4. Buchanan, T., Shreeve, D.: An Evaluation of Optimization Techniques for the Prediction of Muscle Activation Patterns During Isometric Tasks. Journal of Biomechanical Engineering 118, 565 (1996)

    Article  Google Scholar 

  5. Davies, P.M.: Steps to Follow: The Comprehensive Treatment of Patients with Hemiplegia. Springer (2000)

    Google Scholar 

  6. Delp, S., Loan, J., Hoy, M., Zajac, F., Topp, E., Rosen, J., Center, V., Alto, P.: An interactive graphics-based model of the lower extremity to studyorthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37(8), 757–767 (1990)

    Article  Google Scholar 

  7. Ding, M., Ueda, J., Ogasawara, T.: Pinpointed muscle force control using a power-assisting device. Journal of the Robotics Society of Japan 27(9), 1037–1045 (2009)

    Article  Google Scholar 

  8. Jacob, S.W., Francone, C.A., Lossow, W.J.: Structure and Function in Man. WB Saunders Company (1982)

    Google Scholar 

  9. Jesunathadas, M., Marmon, A., Gibb, J., Enoka, R.: Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults. Journal of Applied Physiology 108(6), 1659–1667 (2010)

    Article  Google Scholar 

  10. Karlsson, D., Peterson, B.: Towards a model for force predictions in the human shoulder. Journal of Biomechanics 25(2), 189–199 (1992)

    Article  Google Scholar 

  11. Krishnamoorthy, V., Goodman, S., Zatsiorsky, V., Latash, M.: Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biological Cybernetics 89(2), 152–161 (2003)

    Article  MATH  Google Scholar 

  12. Larsen, B.: Muscles: Testing and function with posture and pain. Medicine & Science in Sports & Exercise 37(8), 1447 (2005)

    Article  Google Scholar 

  13. Martini, F., Bartholomew, E.: Essentials of Anatomy & Physiology. Prentice Hall (2000)

    Google Scholar 

  14. Ming, D., Ueda, J., Ogasawara, T.: Pinpointed muscle force control using a power-assisting device: System configuration and experiment. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 181–186 (2008), doi:10.1109/BIOROB.2008.4762829

    Google Scholar 

  15. MotCo Project: http://motco.info/data/pcsa.html

  16. National Institute of Neurological Disorders and Stroke: National Institute of Neurological Disorders and Stroke (2012), http://www.ninds.nih.gov/

  17. Pardalos, P., Rosen, J.: Constrained global optimization: algorithms and applications (1987)

    Google Scholar 

  18. Prilutsky, B.: Coordination of two-and one-joint muscles: functional consequences and implications for motor control. Motor Control 4(1), 48–52 (2000)

    Google Scholar 

  19. Crowninshield, R., et al.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomechanics 14, 793–801 (1981)

    Article  Google Scholar 

  20. Reinkensmeyer, D., Aoyagi, D., Emken, J., Galvez, J., Ichinose, W., Kerdanyan, G., Maneekobkunwong, S., Minakata, K., Nessler, J., Weber, R., et al.: Tools for understanding and optimizing robotic gait training. Journal of Rehabilitation Research and Development 43(5), 657 (2006)

    Article  Google Scholar 

  21. Reisman, D., Scholz, J.: Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain 126(11), 2510 (2003)

    Article  Google Scholar 

  22. Ueda, J., Hyderabadwala, M., Krishnamoorthy, V., Shinohara, M.: Motor task planning for neuromuscular function tests using an individual muscle control technique. In: IEEE 11th International Conference on Rehabilitation Robotics (2009)

    Google Scholar 

  23. Ueda, J., Matsugashita, M., Oya, R., Ogasawara, T.: Control of muscle force during exercise using a musculoskeletal-exoskeletal integrated human model. In: Experimental Robotics, pp. 143–152 (2008)

    Google Scholar 

  24. Ueda, J., Ming, D., Krishnamoorthy, V., Shinohara, M., Ogasawara, T.: Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(4), 339–350 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ueda, J., Ding, M. (2013). Individual Control of Redundant Skeletal Muscles Using an Exoskeleton Robot. In: Milutinović, D., Rosen, J. (eds) Redundancy in Robot Manipulators and Multi-Robot Systems. Lecture Notes in Electrical Engineering, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33971-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33971-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33970-7

  • Online ISBN: 978-3-642-33971-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics