Some Aspects of Knowledge Approximation and Similarity

  • Aleksandar Jovanović
  • Aleksandar Perović
  • Zoran Djordjević
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 3)

Abstract

In the representation and processing of knowledge, the need for knowledge approximation and similarity is frequent. Concepts needed to deal with these issues are emerging; however, the unified treatment is still missing. With this in mind, we discern two sorts of knowledge, continuous represented, which we usually meet in the sensory based knowledge systems, and the other of discrete information structures, involved in automatic reasoning and processing of symbolic sequences in various contexts. The issues related to knowledge similarity and approximation are discussed in some special cases (separately following our initial knowledge division), which are spanning more general field and is used for exposition of our ideas and solution proposals. We have presented the concepts of knowledge similarity and approximation, together with appropriate scaling - degrees of similarity/approximation, in metric spaces for continuous case and the solution for discrete information spaces- DIS spaces for the later case.

Keywords

Knowledge approximation similarity molecular biology chromosome gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    del Millan, J.R., Mourino, J., Franze, M., et al.: A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Transactions on Neural Networks 13(3), 678–686 (2002)CrossRefGoogle Scholar
  2. 2.
    Cincotti, F., Mattia, D., Babiloni, C., et al.: Classification of EEG mental patterns by using two scalp electrodes and Mahalanobis distance-based classifiers. Methods of Information in Medicine 41(4), 337–341 (2002)Google Scholar
  3. 3.
    Birbaumer, N., Kübler, A., Ghanayim, N., et al.: The thought translation device (TTD) for completely paralyzed patients. IEEE Transactions on Rehabilitation Engineering 8(2), 190–193 (2000)CrossRefGoogle Scholar
  4. 4.
    Japundžić-Žigon, N., Milutinović, S., Jovanović, A.: Effects of Nonpeptide and Selective V1 and V2 Antagonists on Blood Pressure Short-Term variability in Spontaneously Hypertensive Rats. Journal of Pharmacological Sciences 95, 47–55 (2004)CrossRefGoogle Scholar
  5. 5.
    Spasić, S., Perović, A., Klonowski, W., Djordjević, Z., Duch, W., Jovanović, A.: Forensics of features in the spectra of biological signals. International Journal for Bio Electromagnetism 12(2), 62–75 (2010), http://www.ijbem.net Google Scholar
  6. 6.
    Blinowska, K.: Methods for localization of time-frequency specific activity and estimation of information transfer in brain. International Journal of Bioelectromagnetism 10(1), 2–16 (2008) http://www.ijbem.org
  7. 7.
    Jovanović, A., Perović, A., Klonowski, W., Duch, W., Djordjević, Z., Spasić, S.: Detection of structural features in biological signals. Journal of Signal Processing Systems 60(1), 115–129 (2010)CrossRefGoogle Scholar
  8. 8.
    Zatorre, R.J., Halpern, A.R.: Mental concerts: musical imagery and auditory cortex. Neuron. 47(1), 9–12 (2005)CrossRefGoogle Scholar
  9. 9.
    Grierson, M.: Composing with brainwaves: Minimal trial P300b recognition as an indication of subjective preference for the control of a musical instrument. In: Proceedings of the ICMC, Belfast (2008)Google Scholar
  10. 10.
    Jovanovic, A.: Brain signals in computer interface. Intelektualnie Sistemi 3(1-2), 109–117 (1998) (in Russian)Google Scholar
  11. 11.
    Klonowski, W., Duch, W., Perovic, A., Jovanovic, A.: Some computational aspects of the Brain Computer Interfaces based on Inner Music. Computational Intelligence and Neuroscience 2009, Article ID 950403, 9 pages (2009), doi:10.1155/2009/950403Google Scholar
  12. 12.
    Babiloni, F., Cincotti, F., Marciani, M., et al.: The estimation of cortical activity for brain-computer interface: applications in a domotic context. Computational Intelligence and Neuroscience 2007, Article ID 91651, 7 pages (2007)Google Scholar
  13. 13.
    Babiloni, F., Cichocki, A., Gao, S.: Brain-computer interfaces: towards practical implementations and potential applications. Computational Intelligence and Neuroscience 2007, Article ID 62637, 2 pages (2007)Google Scholar
  14. 14.
    Cincotti, F., Mattia, D., Babiloni, C., et al.: The use of EEG modifications due to motor imagery for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 131–133 (2003)CrossRefGoogle Scholar
  15. 15.
    Astolfi, L., Cincotti, F., Babiloni, C., et al.: Estimation of the cortical connectivity by high-resolution EEG and structural equation modeling: simulations and application to finger tapping data. IEEE Transactions on Biomedical Engineering 52(5), 757–768 (2005)CrossRefGoogle Scholar
  16. 16.
    Liu, L., Arfanakis, K., Ioannides, A.: Visual field influences functional connectivity pattern in a face affect recognition task. International Journal of Bioelectromagnetism 9(4), 245–248 (2007)Google Scholar
  17. 17.
    Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  18. 18.
    Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers (1998)Google Scholar
  19. 19.
    Jovanović, A., Marić, M., Borovčanin, M., Perović, A.: Towards intelligent chromosome analysis. In:Proc. Conf. Bioinformatics Workshop, Soc. for Industrial and Applied Math, SIAM International Conference on Data Mining (SDM 2004), Orlando, Florida (2004)Google Scholar
  20. 20.
    Malkov, S., Vujosevic, M., Jovanovic, A.: One Method for chromosome analysis and comparison. In: Proc. of the Conference Mathematics and Others Sciences. Greek Mathematical Society, CreteGoogle Scholar
  21. 21.
    Obradović, D., Konjović, Z., Pap, E.: Extending PostGIS by imprecise point objects. In: 2010 IEEE 8th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, September 10–11 (2010)Google Scholar
  22. 22.
    Obradović, D., Konjović, Z., Pap, E., Ralević, N.M.: The maximal distance between imprecise point objects. Fuzzy Sets and Systems 170(1), 76–94 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Perović, A., Stefanović, N., Jovanović, A.: Syntax Zooming. In: Proc. of 3rd Serbian Hungarian Joint Symposium on Intelligent Systems, SISY 2005, Subotica (2005)Google Scholar
  24. 24.
    Stevanović, M., Dobriǐć, V., Kecarević, D., Perović, A., Savić-Pavićević, D., Keckarević-Marković, M., Jovanović, A., Romac, S.: Human Y-specific STR haplotypes in population of Serbia and Montenegro. Forensic Science International 171(2-3), 216–221 (2007).Google Scholar
  25. 25.
    Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier (2001)Google Scholar
  26. 26.
    Wolfram, D.A.: The Clausal Theory of Types. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (1993)Google Scholar
  27. 27.
    Shoenfield, J.R.: Mathematical logic. Addison Wesley (1967)Google Scholar
  28. 28.
    Hinman, P.G.: Recursion-Theoretic Hierarchies. Springer (1978)Google Scholar
  29. 29.
    Dowek, G.: Higher order unification and matching. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aleksandar Jovanović
    • 1
  • Aleksandar Perović
    • 2
  • Zoran Djordjević
    • 1
  1. 1.Faculty of Mathematics, Group for intelligent systemsUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Transportation and Traffic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations