Skip to main content

Polarimetric and Other Optical Probes for the Solid–Liquid Interface

  • Chapter
  • First Online:

Abstract

The rise of nanoscience and nanotechnology has induced a remarkable change in the science of liquid surfaces and interfaces: from a macroscopic and thermodynamic oriented approach the field is now steadily moving towards a microscopic and atomistic understanding. However, the need to measure, monitor, understand and ultimately control (electro-) chemical and physical processes occurring at liquid interfaces and surfaces cannot been simply fulfilled by transferring the highly successful electron beam or ion beam techniques into the liquid environment due to the limited free path of electrons or ions. Optical techniques, especially polarimetric techniques, have experienced a renaissance in the surface science of the liquid–solid interface and will become even more important in the future. Despite the penetration depth of light is for all materials at least of the order of 100 nm or above, surface sensitive optical probes have been developed, capable of monitoring processes on the nanosecond scale with thickness resolution of less than a monolayer. On the first sight, however, the major disadvantage of optical probes, being of indirect nature compared to electron microscopy or spectroscopy, proves then to be a fascinating feature, because all polarimetric, linear or nonlinear intensity and sum frequency, or scattering optical probes require modeling the full system for understanding the interactions between the liquid and solid at the interface. In the following we will demonstrate, after an introduction to electrochemistry, with a few selected examples the power of polarimetric techniques for understanding the liquid interface and review prior work especially for the electrochemical interface by polarimetric probes. The importance of correlation measurements, mainly current voltage measurements and scanning probe techniques for a thorough understanding is finally highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Especially these discrepancies make the discussions exciting and the indirect nature of the optical probes as well as the possible controversial origin provide a fascinating playground for physics.

References

  1. P.M. Sherwood, Analytica Chimica Acta 283, 52 (1993)

    Article  Google Scholar 

  2. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light, 2nd edn. (North Holland Elsevier, Amsterdam, 1999)

    Google Scholar 

  3. H.G. Tompkins , E.A. Irene, Handbook of Ellipsometry, 2nd edn. (Springer, Heidelberg, 2005)

    Google Scholar 

  4. J.F. McGilp, D. Weaire, C.H. Patterson, (eds.), Epioptics (Springer, Berlin, 1995), section D. Zahn

    Google Scholar 

  5. G. Bauer, W.R. (eds.), Optical Characterization of epitaxial semiconductor layers (Springer, Berlin, 1995) section W. Richter and D. Zahn

    Google Scholar 

  6. P.Y.Yu, M. Cardona, Fundamentals of Semiconductors and Physics and Materials Properties, Chap. 6, 2nd revised edn. (Springer, Berlin, 1999)

    Google Scholar 

  7. D. Landolt, Corrosion and Surface Chemistry of Metals (EFPL Press, Lausanne, 2007)

    Google Scholar 

  8. P.V. Zant, Microchip Fabrication, Chap.13, 5th edition edn. (McGraw-Hill Professional, New York, 2004)

    Google Scholar 

  9. J.J.A.J. Bard, R. Parsons, Standard Potentials in Aqueous Solution (Marcel Dekker Inc., New York, 1985)

    Google Scholar 

  10. http://www.doitpoms.ac.uk/tlplib/pourbaix/index.php (downloaded 5th. Nov. 2012)

  11. http://www.doitpoms.ac.uk/tlplib/aqueous_corrosion/index.php (downloaded 5th. Nov. 2012)

  12. E.S. Wolfgang Schmickler, Interfacial Electrochemistry, 2nd edn. (Springer, Berlin, 2010)

    Google Scholar 

  13. H. Ibach, Physics of Surfaces and Interfaces (Springer, Berlin, 2006)

    Google Scholar 

  14. A.P.G. Arthur, W. Adamson, Physical Chemistry of Surfaces, 6th edn. (Wiley, New York, 1997)

    Google Scholar 

  15. W.V.C.H. Hamann, Elektrochemie, 4th edn. (Wiley- VCH, Weinheim, 2005)

    Google Scholar 

  16. A.M.O.B. Christopher, M.A. Brett, Electrochemistry, 1st edn. (Oxford University Press, Oxford, 1994)

    Google Scholar 

  17. K. Itaya, E. Tomita, Surf. Sci. 201, L507 (1988)

    Article  Google Scholar 

  18. D. Kolb, Ber. Bunsenges. Phys. Chem. 98, 1421 (1994)

    Article  Google Scholar 

  19. U. Kreibig, Zeit. Physik D 3, 239 (1986)

    Article  Google Scholar 

  20. V. Rinnerbauer, K. Hingerl, M. Kovalenko, W. Heiss, Appl. Phys. Lett. 89, (2006)

    Google Scholar 

  21. W. Kaim, A. Klein, Spectroelectrochemistry (Royal Society Chemistry Publishing, Cambridge, 2008)

    Google Scholar 

  22. F.M. Geiger, Annu. Rev. Phys. Chem. 60, 61 (2009)

    Article  Google Scholar 

  23. A. Tadjeddine, A. Peremans, Nonlinear optical spectroscopy of the electrochemical interface, in Spectroscopy for Surface Science. Advances in Spectroscopy,, vol. 26, ed. by R. Clark, R.F. Hester (Wiley, Chichester, 1998), p. 159

    Google Scholar 

  24. T.F. Young, L.F. Maranville, H.M. Smith, The structure of electrolytic, solutions, in Raman Spectral Investigations of Ionic Equilibria in Solutions of Strong Electrolytes, ed. by W.J. Hamer (Wiley, New York, 1959), p. 35

    Google Scholar 

  25. M.J. Weaver, S. Zou, Vibrational spectroscopy of electrochemivcal interfaces, some walls and bridges to surface science understanding, in Spectroscopy for Surface Science, Advances in Spectroscopy, vol. 26, ed. by R.J.H. Clark, R.E. Hester (Wiley, New York, 1998), p. 219

    Google Scholar 

  26. Z. Tian, B. Ren, Annu. Rev. Phys. Chem. 55, 197 (2004)

    Article  Google Scholar 

  27. M. Cardona, K. Shaklee, F. Pollak, Phys. Rev. 154, 696 (1967)

    Article  Google Scholar 

  28. P.H. Hahn, W.G. Schmidt, F. Bechstedt, Phys. Rev. Lett. 88, 016402 (2001)

    Article  Google Scholar 

  29. R. Kötz, D.M. Kolb, Zeitschrift für Physikalische Chemie 112, 69 (1978)

    Article  Google Scholar 

  30. H. Lüth, Solid Surfaces, Interfaces and Thin Films, Graduate Texts in Physics (Springer, Berlin, 2010)

    Google Scholar 

  31. T.E. Furtak, D.W. Lynch, Phys. Rev. Lett. 35, 960 (1975)

    Article  Google Scholar 

  32. R. Kofman, P. Cheyssac, J. Richard, Surf. Sci. 77, 537 (1978)

    Article  Google Scholar 

  33. D. Kolb, W. Boeck, K. Ho, Phys. Rev. Lett. 47, 26 (1981)

    Google Scholar 

  34. D. Beaglehole, Experimental studies of liquid, interfaces, in Fluid Interfacial Phenomena, ed. by C.A. Croxton (Wiley, New York, 1986), p. 523

    Google Scholar 

  35. A. Hamnett, J. Chem. Soc. Faraday Trans. 89, 1593 (1993)

    Article  Google Scholar 

  36. P. Christensen, A. Hamnett, Electrochim. Acta 45, 2443 (2000)

    Article  Google Scholar 

  37. H. Arwin, Thin Solid Films 519, 2589 (2011)

    Article  Google Scholar 

  38. K. Bartel et al., J. Phys. Condens. Matter. 18, 3535 (2006)

    Article  Google Scholar 

  39. R. Teppner, K. Haage, D. Wantke, H. Motschmann, J. Phys. Chem. B 104, 11489 (2000)

    Article  Google Scholar 

  40. J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves, Developments in Electromagnetic Theory and Applications (M. Nijhoff Publishers, Dordrecht, 1987)

    Google Scholar 

  41. L. Broch et al., Rev. Sci. Instrum. 78, 064101 (2007)

    Article  Google Scholar 

  42. A. Zimmer et al., Electrochim. Acta 52, 4760 (2007)

    Article  Google Scholar 

  43. A. Zimmer et al., J. Electrochem. Soc. 152, G772 (2005)

    Article  Google Scholar 

  44. M. Prato, A. Gussoni, M. Panizza, Physica Status Solidi (c) 5, 1307–1304 (2008)

    Google Scholar 

  45. M.L. Walker, L.J. Richter, D. Josell, T.P. Moffat, J. Electrochem. Soc. 153, C235 (2006)

    Article  Google Scholar 

  46. M.L. Walker, L.J. Richter, T.P. Moffat, J. Electrochem. Soc. 152, C403 (2005)

    Article  Google Scholar 

  47. M.L. Walker, L.J. Richter, T.P. Moffat, J. Electrochem. Soc. 153, C557 (2006)

    Article  Google Scholar 

  48. M.L. Walker, L.J. Richter, T.P. Moffat, J. Electrochem. Soc. 154, D277 (2007)

    Article  Google Scholar 

  49. H. Rokugawa, S. Adachi, J. Electrochem. Soc. 156, H92 (2009)

    Article  Google Scholar 

  50. K. Tomioka, S. Adachi, J. Electrochem. Soc. 152, G173 (2005)

    Article  Google Scholar 

  51. N. Tomita, S. Adachi, J. Electrochem. Soc. 149, G245 (2002)

    Article  Google Scholar 

  52. S. Adachi, D. Kikuchi, J. Electrochem. Soc. 147, 4618 (2000)

    Article  Google Scholar 

  53. D. Kikuchi, Y. Matsui, S. Adachi, J. Electrochem. Soc. 147, 1973 (2000)

    Article  Google Scholar 

  54. K. Sakaino, Y. Kawabata, S. Adachi, J. Electrochem. Soc. 147, 1530 (2000)

    Article  Google Scholar 

  55. V.L. Berkovits et al., J. Electrochem. Soc. 152, G349 (2005)

    Article  Google Scholar 

  56. O.V. Sulima, A.W. Bett, J. Wagner, J. Electrochem. Soc. 147, 1910 (2000)

    Article  Google Scholar 

  57. M.H. Ubeda et al., J. Electrochem. Soc. 152, A37 (2005)

    Article  Google Scholar 

  58. S. Zangooie, R. Bjorklund, H. Arwin, J. Electrochem. Soc. 144, 4027 (1997)

    Article  Google Scholar 

  59. J. Price et al., Microelectron. Eng. 87, 1661 (2010)

    Article  Google Scholar 

  60. T. Holden et al., Appl. Phys. Lett. 70, 1107 (1997)

    Article  Google Scholar 

  61. K. Bang et al., Bull. Korean Chem. Soc. 26, 947 (2005)

    Article  MathSciNet  Google Scholar 

  62. J.H. den Boer, G.M. Kroesen, F.J. de Hoog, Appl. Opt. 34, 5708 (1995)

    Article  Google Scholar 

  63. P. Weightman, D. Martin, R. Cole, T. Farrell, Rep. Prog. Phys. 68, 1251 (2005)

    Article  Google Scholar 

  64. V. Berkovits et al., Phys. Rev. B 54, R8369 (1996)

    Article  Google Scholar 

  65. V. Mazine, Y. Borensztein, L. Cagnon, P. Allongue, Physica Status Solidi (a) 175, 311 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Hingerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hingerl, K. (2013). Polarimetric and Other Optical Probes for the Solid–Liquid Interface. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics