Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 454))

  • 1308 Accesses

Abstract

Due to complex hybrid dynamics modeling of hybrid systems for predictive control purposes poses a problem that demands an appropriate expansion of the system theory. The classic formulations of mathematical models of (linear) systems, such as differential equation, transfer function, state space etc., are generally not suitable for treating the dynamical properties of complex systems, like hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Henzinger, T.A., Sontag, E.D.: HS 1995. LNCS, vol. 1066. Springer, Heidelberg (1996)

    Book  Google Scholar 

  2. Antsaklis, P.J.: A brief introduction to the theory and applications of hybrid systems. Proceedings of the IEEE 88 (2000)

    Google Scholar 

  3. Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.: HS 1994. LNCS, vol. 999. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  4. Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.: HS 1996. LNCS, vol. 1273. Springer, Heidelberg (1997)

    Book  Google Scholar 

  5. Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.: HS 1997. LNCS, vol. 1567. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  6. Antsaklis, P.J., Stiver, J.A., Lemmon, M.D.: Hybrid Sistem Modeling and Event Identification. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 366–392. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  7. Back, A., Guckenheimer, J., Myers, M.: A Dynamical Simulation Facility for Hybrid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 255–267. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  8. Bemporad, A.: Modeling and control of hybrid dynymical systems: The hybrid toolbox for matlab. In: Troch, I., Breitenecker, F. (eds.) MATHMOD Vienna 2009: Proceedings; Full Papers CD Volume number 35 in ARGESIM Report, pp. 82–100 (2009)

    Google Scholar 

  9. Branicky, M.S.: Studies in hybrid systems: modeling, analysis, and control. PhD thesis, Massechusetts institute of technology (1995)

    Google Scholar 

  10. Brockett, R.W.: Hybrid models for motion control systems. In: Essays in Control: Perspectives in the Theory and its Applications, pp. 29–53. Birkhäuser, Boston (1993)

    Google Scholar 

  11. Engell, S., Frehse, G., Scnieder, E. (eds.): Modelling, Analysis and Design of Hybrid Systems. LNCIS, vol. 279. Springer, Heidelberg (2002)

    Google Scholar 

  12. Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.): HS 1991 and HS 1992. LNCS, vol. 736. Springer, Heidelberg (1993)

    Google Scholar 

  13. Henzinger, T.A., Sastry, S.: HSCC 1998. LNCS, vol. 1386. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  14. Johansson, K.H., Egerstedt, M., Lygeros, J., Sastry, S.: On the regularization of zeno hybrid automata. System and Control Letters 38, 141–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johansson, R. (ed.): Nonlinear and Hybrid Systems in Automotive Control. Springer, London (2003)

    MATH  Google Scholar 

  16. Nerode, A., Kohn, W.: Models for Hybrid Systems: Automata, Topologies and Stability. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 317–356. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  17. Sibirsky, K.S.: Introduction to topological dynamics. Noordhoff international publishing, Leyden (1975)

    MATH  Google Scholar 

  18. Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Analisys: Theory, Methods and Applications 11(6), 665–683 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Witsenhausen, H.S.: A class of hybrid-state continuous time dynamic systems. IEEE Trans. on Automatic Control 11(2), 161–167 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorazd Karer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Karer, G., Škrjanc, I. (2013). Hybrid Dynamics. In: Predictive Approaches to Control of Complex Systems. Studies in Computational Intelligence, vol 454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33947-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33947-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33946-2

  • Online ISBN: 978-3-642-33947-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics