Noise Influence on the Fuzzy-Linguistic Partitioning of Iris Code Space

  • Iulia Maria Motoc
  • Cristina Madalina Noaica
  • Robert Badea
  • Claudiu Gheorghe Ghica
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)

Abstract

This paper analyses the set of iris codes stored or used in an iris recognition system as an f-granular space. The f-granulation is given by identifying in the iris code space the extensions of the fuzzy concepts wolves, goats, lambs and sheep (previously introduced by Doddington as ‘animals’ of the biometric menagerie) – which together form a partitioning of the iris code space. The main question here is how objective (stable / stationary) this partitioning is when the iris segments are subject to noisy acquisition. In order to prove that the f granulation of iris code space with respect to the fuzzy concepts that define the biometric menagerie is unstable in noisy conditions (is sensitive to noise), three types of noise (localvar, motion blur, salt and pepper) have been alternatively added to the iris segments extracted from University of Bath Iris Image Database. The results of 180 exhaustive (all-to-all) iris recognition tests are presented and commented here.

Keywords

fuzzy biometric menagerie salt and pepper noise motion blur localvar noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badea, R., Noaica, C.M, Motoc, I.M.: Technical Report - Biometric Menagerie is sensitive to noise. Artificial Intelligence & Computational Logic Laboratory, Mathematics and Computer Science Department, Spiru Haret University (June 2012).Google Scholar
  2. 2.
    Balas, V.E., Motoc, I.M., Barbulescu, A.: Combined Haar-Hilbert and Log-Gabor Based Iris Encoders. In: Balas, V.E., Fodor, J., Varkonyi-Koczy, A. (eds.) New Concepts and Applications in Soft Computing. Studies in Computational Intelligence, vol. 417, pp. 1–26. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Doddington, G., Liggett, W., Martin, A., Przybocki, M., Reynolds, D.: Sheep, Goats, Lambs and Wolves: A Statistical Analysis of Speaker Performance in the NIST 1998 Speaker Recognition Evaluation. In: Int’l Conf. Spoken Language Processing (ICSLP), Sydney, vol. 4, pp. 1351–1354 (1998)Google Scholar
  4. 4.
    Popescu-Bodorin, N.: Exploring New Directions in Iris Recognition. In: 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. pp. 384–391. Conference Publishing Services – IEEE Computer Society (September 2009)Google Scholar
  5. 5.
    Popescu-Bodorin, N., Balas, V.E.: Comparing Haar-Hilbert and Log-Gabor based iris encoders on Bath Iris Image Database. In: Proc. 4th Int. Work. on Soft Computing Apps., pp. 191–196. IEEE Press (July 2010)Google Scholar
  6. 6.
    Popescu-Bodorin, N.: Processing Toolbox for the University of Bath Iris Image Database (PT-UBIID-v.02) (2010), http://fmi.spiruharet.ro/bodorin/pt-ubiid/
  7. 7.
    Popescu-Bodorin, N., Balas, V.E., Motoc, I.M.: 8-Valent Fuzzy Logic for Iris Recognition and Biometry. In: Proc. 5th IEEE Int. Symp. on Computational Intelligence and Intelligent Informatics, Floriana, Malta, September 15-17, pp. 149–154. IEEE Press (2011)Google Scholar
  8. 8.
    Popescu-Bodorin, N., Balas, V.E., Motoc, I.M.: Iris Codes Classification Using Discriminant and Witness Directions. In: Proc. 5th IEEE Int. Symp. on Computational Intelligence and Intelligent Informatics, Floriana, Malta, September 15-17, pp. 143–148. IEEE Press (2011)Google Scholar
  9. 9.
    Popescu-Bodorin, N., Balas, V.E., Motoc, I.M.: Biometric Menagerie - Fuzzy and Inconsistent. In: 5th International Workshop on Soft Computing Applications, Szeged, Hungary, August 22-24 (2012)Google Scholar
  10. 10.
    Smart Sensors Limited, IRIS DB 50 (the former University of Bath Iris Image Database), http://www.smartsensors.co.uk/informations/bath-iris-image-database/ (retrieved on November 19, 2011)
  11. 11.
    Yager, N., Dunstone, T.: The biometric menagerie. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(2), 220–230 (2010)CrossRefGoogle Scholar
  12. 12.
    Zadeh, L.A.: A New Direction in AI - Toward a Computational Theory of Perceptions. AI Magazine 22(1), 73–84 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Iulia Maria Motoc
    • 1
  • Cristina Madalina Noaica
    • 1
  • Robert Badea
    • 1
  • Claudiu Gheorghe Ghica
    • 1
    • 2
  1. 1.Artificial Intelligence & Computational Logic Lab., Mathematics & Computer Science DepartmentSpiru Haret UniversityBucharestRomania
  2. 2.Clintelica ABStockholmSweden

Personalised recommendations