Automatic Classification of Liver Diseases from Ultrasound Images Using GLRLM Texture Features

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)


Ultrasound imaging is considered to be one of the most cost-effective and non-invasive techniques for conclusive diagnosis in some cases and preliminary diagnosis in others. Automatic liver tissue characterization and classification from ultrasonic scans have been for long, the concern of many researchers, and has been made possible today by the availability of the most powerful and cost effective computing facilities. Automatic diagnosis and classification systems are used both for quick and accurate diagnosis and as a second opinion tool for clarifications. This paper analyzes the effect of various linear, non linear and diffusion filters in improving the quality of the liver ultrasound images before proceeding to the subsequent phases of feature extraction and classification using Gray Level Run Length Matrix Features and Support Vector Machines respectively.


Filters Texture Gray Level Run Length Matrix Classification Support Vector Machine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aboshosha, A., Hassan, M., Ashour, M., El Mashade, M.: Image denoising based on spatial filters, an analytical study. In: Proc. International Conference on Computer Engineering & Systems, ICCES, pp. 245–250 (2009), doi:10.1109/ICCES.2009.5384036Google Scholar
  2. 2.
    Zaid, A.Z.S.A., Fakhr, M.W., Mohamed, A.F.A.: Automatic Diagnosis of Liver Diseases from Ultrasound Images. In: Proc. International Conferenceon Computer Engineering and Systems, pp. 313–319 (2006), doi: 10.1109/ICCES.2006.320467Google Scholar
  3. 3.
    Md. Sohail, A.S., Bhattacharya, P., Mudur, S.P., Krishnamurthy, S.: Local Relative GLRLM-Based Texture Feature Extraction for Classifying Ultrasound Medical Images. In: Proc. 24th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 001092–001095 (2011), doi:10.1109/CCECE.2011.6030630Google Scholar
  4. 4.
    Materka, A., Strzelecki, M.: Texture Analysis Methods – A Review. Technical University of Lodz, Institute of Electronics, COST B11 Report, Brussels (1998)Google Scholar
  5. 5.
    Yoo, B., Nishimura, T.: A Study of Ultrasound Images Enhancement using Adaptive Speckle Reducing Anisotropic Diffusion. In: Proc. IEEE International Symposium on Industrial Electronics, pp. 581–585. Seoul Olympic Parktel, Seoul (2009), doi:10.1109/ISIE.2009.5213936Google Scholar
  6. 6.
    Christos, P., Loizou, C.S.: Pattichis Despeckle Filtering Algorithms and Software for Ultrasound Imaging. Morgan & Claypool (2008)Google Scholar
  7. 7.
    Umarani, C., Ganesan, L., Radhakrishnan, S.: Combined Statistical and Structural Approach for Unsupervised Texture Classification. International Journal of Imaging Science and Engineering (IJISE) 2(1), 162–165 (2008) ISSN: 1934-9955Google Scholar
  8. 8.
    Balasubramanian, D., Srinivasan, P., Gurupatham, R.: Automatic Classification of Focal Lesions in Ultrasound Liver Images using Principal Component Analysis and Neural Networks. In: Proc.29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France, pp. 2134–2137 (2007)Google Scholar
  9. 9.
    Kyriacou, E., Pavlopoulos, S.: Computer Assisted Characterization of Liver tissue using Image Texture analysis techniques on B-scan images. In: Proc. of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 806–809 (1997), doi:10.1109/IEMBS.1997.757766Google Scholar
  10. 10.
    Gonzalez Rafael, C., Woods Richard, E.: Digital Image Processing. Prentice-Hall, India (2008)Google Scholar
  11. 11.
    Gonzalez Rafael, C., Woods Richard, E., Eddins Steven, L.: Digital Image Processing Using MATLAB Pearson Education (2004)Google Scholar
  12. 12.
    Jayaraman, S., Esakkirajan, S., Veerakumar, T.: Digital Image Processing. Tata McGraw Hill Education, New Delhi (2010)Google Scholar
  13. 13.
    Abd-Elmoniem, K.Z., Youssef, A.-B.M., Kadah, Y.M.: Real-Time Speckle Reduction and Coherence Enhancement in Ultrasound imaging via nonlinear anisotropic diffusion. Proc. IEEE Trans. on Biomedical Engineering 49(9), 997–1014 (2002), doi:10.1109/TBME.2002.1028423CrossRefGoogle Scholar
  14. 14.
    Thangavel, K., Manavalan, R., Laurence Aroquiaraj, I.: Removal of Speckle Noise from Ultrasound Medical Image based on Special Filters: Comparative Study. ICGST-GVIP Journal 9(III), 25–32 (2009)Google Scholar
  15. 15.
    Tuceryan, M.: Texture Analysis.The Handbook of Pattern Recognition and Computer Vision, 2nd edn. World Scientific Publishing Co. (1998)Google Scholar
  16. 16.
    Galloway, M.M.: Texture Analysis Using Gray Level Run Lengths. Computer Graphics Image Processing 4, 172–179 (1975), doi:10.1016/S0146-664X(75)80008-6CrossRefGoogle Scholar
  17. 17.
    Sharma, M., Singh, S.: Texture Analysis Experiments with Meastex and Vistex Benchmarks. In: Proc. International Conference on Advances in Pattern Recognition, pp. 417–424 (2001), doi: Scholar
  18. 18.
    Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris Jr., F.C.: Survey of image denoising techniques, doi: Scholar
  19. 19.
    Kaur, N., Chadda, S., Thakur, R.: A Survey of Image De-noising Filters. IJCST 3(1), 505–507 (2012) ISSN 0976-8491(Online), 2229-4333 (Print)Google Scholar
  20. 20.
    Maini, R., Aggarwal, H.: Performance Evaluation of Various Speckle Noise Reduction Filters on Medical Images. International Journal of Recent Trends in Engineering 2(4), 22–25 (2009)Google Scholar
  21. 21.
    Hawlick, R.M.: Statistical and Structural Approaches to Texture. Proceedings of the IEEE 67(5), 786–804 (1979), doi:10.1109/PROC.1979.11328CrossRefGoogle Scholar
  22. 22.
    Ribeiro, R., Marinho, R.T., Velosa, J., Ramalho, F., Miguel Sanches, J., Suri, J.S.: The Usefulness of Ultrasound in the Classification of Chronic Liver Disease. In: Proc. 33rd Annual International Conference of the IEEE EMBS, Boston, pp. 5132–5135 (2011), doi:10.1109/IEMBS.2011.6091271Google Scholar
  23. 23.
    Ribeiro, R., Marinho, R., Velosa, J., Ramalho, F., Miguel Sanches, J.: Chronic liver disease staging classification based on ultrasound, clinical and laboratorial data. In: Proc. International Symposium on Biomedical Imaging: From Nano to Macro, pp. 707–710. IEEE (2011), doi:10.1109/ISBI.2011.5872504Google Scholar
  24. 24.
    Sivakumar, R., Gayathri, M.K., Nedumaran, D.: Speckle Filtering Of Ultrasound B-Scan Images - A Comparative Study between Spatial And Diffusion Filters. In: Proc. IEEE Conference on Open Systems (ICOS), pp. 80–85 (2010), doi:10.1109/ICOS.2010.5720068Google Scholar
  25. 25.
    Vanithamani, R., Umamaheshwari, G., Ezhilarasi, M.: Modified Hybrid Median Filter for Effective Speckle Reduction in Ultrasound Images. In: Proc. of the 12th International Conference on Networking, VLSI and Signal Processing, ICNVS 2010, pp. 166–171 (2010)Google Scholar
  26. 26.
    Kalaivani Narayanan, S., Wahidabanu, R.S.D.: A view on Despeckling in Ultrasound Imaging. International Journal of Signal Processing, Image Processing and Pattern Recognition 2(3), 85–98 (2009)Google Scholar
  27. 27.
    Zhou, S., Wan, J.: A Survey of Algorithms for the Analysis of Diffused Liver Disease from B-mode Ultrasound Images. In: Proc. The Ninth International Conference on Electronic Measurement & Instruments ICEMI 2009, pp. 576–582. IEEE (2009), doi:10.1109/ICEMI.2009.5274499Google Scholar
  28. 28.
    Vasconcelos, V., Silva, J.S., Marques, L., Barroso, J.: Statistical Textural Features for Classification of Lung Emphysema in CT Images:A comparative study. In: Proc. 5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–5 (2010)Google Scholar
  29. 29.
    Nailon, W.H.: Texture Analysis Methods for Medical Image Characterisation. Biomedical Imaging InTech, 75–100 (2010), doi:10.5772/8912Google Scholar
  30. 30.
    Fujita, Y., Hamamoto, Y., Segawa, M., Terai, S., Sakaida, I.: An Improved Method for Cirrhosis Detection using Liver’s Ultrasound images. In: International Conference on Pattern Recognition, pp. 2294–2297 (2010), doi:10.1109/ICPR.2010.561Google Scholar
  31. 31.
    Yu, Y., Acton, S.T.: Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002), doi:10.1109/TIP.2002.804276MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wu, Y.-H., Huang, J.-Y., Cheng, S.-C., Yang, C.-K., Lin, C.-L.: Evolutionary Feature Construction for Ultrasound Image Processing and Its Application to Automatic Liver Disease Diagnosis. In: Proc. International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 565–570 (2011), doi:10.1109/CISIS.2011.93Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Information TechnologyAmrita Vishwa VidyapeethamCoimbatoreIndia
  2. 2.Department of Electronics and Communication EngineeringDr. Mahalingam College of Engineering and TechnologyPollachiIndia

Personalised recommendations