Morphological Wavelets for Panchromatic and Multispectral Image Fusion

  • Silviu Ioan Bejinariu
  • Florin Rotaru
  • Cristina Diana Niţă
  • Mihaela Costin
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)


Image fusion is the combining process of relevant information from one or more images to create a single image with more informational content. In remote sensing applications, the spatial resolution of the multispectral images is enhanced using detail information from the panchromatic images which have a higher resolution. This process is known as pansharpening. One of the most used pansharpening method is based on wavelet decomposition. The edge information from the panchromatic image is injected in the wavelet decomposition of the multispectral image. In this paper a fusion method based on morphological wavelets is proposed. The main advantage of morphological wavelets is the computing complexity, because only integer operations are used.


image fusion multispectral image morphological wavelet transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiazzi, B., Baronti, S., Selva, M.: Improving component substitution pansharpening through multivariate regression of MS+PAN data. IEEE Transactions on Geoscience and Remote Sensing 45(10), 98–102 (2007)CrossRefGoogle Scholar
  2. 2.
    Alparone, L., et al.: Comparison of Pansharpening Algorithms: Outcome of the 2006 GRS-S Data-Fusion Contest. IEEE Transactions on Geoscience and Remote Sensing 45(10), 3012–3021 (2007)CrossRefGoogle Scholar
  3. 3.
    Coltuc, D., Bolon, P., Chassery, J.-M.: Exact histogram specification. IEEE Transactions on Image Processing 15(5), 1143–1152 (2006)CrossRefGoogle Scholar
  4. 4.
    De, I., Chanda, B.: A simple and efficient algorithm for multifocus image fusion using morphological wavelets. Signal Processing 86(5), 924–936 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Dong, J., Zhuang, D., Huang, Y., Fu, J.: Survey of Multispectral Image Fusion Techniques in Remote Sensing Applications. Image Fusion and Its Applications, Intech., 1–22 (2011)Google Scholar
  6. 6.
    Gomez, R.B., Jazaeri, A., Kafatos, M.: Wavelet-based hyperspectral and multispectral image fusion. In: Proc. SPIE. Geo-Spatial Image and Data Exploitation II, vol. 4383, pp. 36–42Google Scholar
  7. 7.
    González-Audícana, M., Saleta, J.L., Catalán, R.G., García, R.: Fusion of Multispectral and Panchromatic Images Using Improved IHS and PCA Mergers Based on Wavelet Decomposition. IEEE Transactions on Geoscience and Remote Sensing 42(6), 1291–1299 (2004)CrossRefGoogle Scholar
  8. 8.
    Goutsias, J., Heijmans, H.J.: Nonlinear multiresolution signal decomposition schemes, Part 1: morphological pyramids. IEEE Trans. Image Processing 9, 1862–1876 (2000)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Heijmans, H.J., Goutsias, J.: Nonlinear multiresolution signal decomposition schemes, Part 2: morphological wavelets. IEEE Trans. Image Processing 9, 1897–1913 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Mitianoudis, N., Tzimiropoulos, G., Stathaki, T.: Fast Wavelet-based Pansharpening of Multi-Spectral Images. In: Proc. of 2010 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 11–16 (2010)Google Scholar
  11. 11.
    Nobuhara, H., Hirota, K.: A Fuzzification of MorphologicalWavelets Based on Fuzzy Relational Calculus and its Application to Image Compression/Reconstruction. Journal of Advanced Computational Intelligence and Intelligent Informatics 8(4), 373–378 (2004)Google Scholar
  12. 12.
    Open Source Computer Vision Library, Reference Manual, Copyright 1999-2001 Intel CorporationGoogle Scholar
  13. 13.
    Shah, V.P., Younan, N.H., King, R.L.: An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets. IEEE Transactions on Geoscience and Remote Sensing 46(5), 1323–1335 (2008)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Yang, S., Wang, M., Jiao, L.: ‘Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis. Information Fusion 13(3), 177–184 (2012)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Global Observatory for Ecosystem Services, Michigan State University,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Silviu Ioan Bejinariu
    • 1
  • Florin Rotaru
    • 1
  • Cristina Diana Niţă
    • 1
  • Mihaela Costin
    • 1
  1. 1.Institute of Computer ScienceRomanian Academy, Iasi BranchIasiRomania

Personalised recommendations