Information Theoretic Security by the Laws of Classical Physics

(Plenary Paper)
  • R. Mingesz
  • L. B. Kish
  • Z. Gingl
  • C. G. Granqvist
  • H. Wen
  • F. Peper
  • T. Eubanks
  • G. Schmera
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)


It has been shown recently that the use of two pairs of resistors with enhanced Johnson-noise and a Kirchhoff-loop—i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol—for secure key distribution leads to information theoretic security levels superior to those of a quantum key distribution, including a natural immunity against a man-in-the-middle attack. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. This presentation first briefly surveys the KLJN system and then discusses related, essential questions such as: what are perfect and imperfect security characteristics of key distribution, and how can these two types of securities be unconditional (or information theoretical)? Finally the presentation contains a live demonstration.


information theoretic security unconditional security secure key exchange secure key distribution quantum encryption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merali, Z.: Hackers blind quantum cryptographers. Nature News (August 29, 2009), doi:10.1038/news.2010.436Google Scholar
  2. 2.
    Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications 2 (article number 349) (2011), doi:10.1038/ncomms1348.Google Scholar
  3. 3.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics 4, 686–689 (2010), doi:10.1038/NPHOTON.2010.214CrossRefGoogle Scholar
  4. 4.
    Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Scarani, V., Makarov, V., Kurtsiefer, C.: Experimentally faking the violation of Bell’s inequalities. Phys. Rev. Lett. 107, 170404 (2011), doi:10.1103/PhysRevLett.107.170404CrossRefGoogle Scholar
  5. 5.
    Makarov, V., Skaar, J.: Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Information and Computation 8, 622–635 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13, 013043 (2011), doi:10.1088/1367-2630/13/1/013043Google Scholar
  7. 7.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Thermal blinding of gated detectors in quantum cryptography. Optics Express 18, 27938–27954 (2010), doi:10.1364/OE.18.027938CrossRefGoogle Scholar
  8. 8.
    Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011), doi:10.1103/PhysRevLett.107.110501CrossRefGoogle Scholar
  9. 9.
    Lydersen, L., Skaar, J., Makarov, V.: Tailored bright illumination attack on distributed-phase-reference protocols. J. Mod. Opt. 58, 680–685 (2011), doi:10.1080/09500340.2011.565889CrossRefGoogle Scholar
  10. 10.
    Lydersen, L., Akhlaghi, M.K., Majedi, A.H., Skaar, J., Makarov, V.: Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J. Phys. 13, 113042 (2011), doi:10.1088/1367-2630/13/11/113042Google Scholar
  11. 11.
    Lydersen, L., Makarov, V., Skaar, J.: Comment on Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Appl. Phys. Lett. 99, 196101 (2011), doi:10.1063/1.3658806CrossRefGoogle Scholar
  12. 12.
    Sauge, S., Lydersen, L., Anisimov, A., Skaar, J., Makarov, V.: Controlling an actively-quenched single photon detector with bright light. Opt. Express 19, 23590–23600 (2011)CrossRefGoogle Scholar
  13. 13.
    Lydersen, L., Jain, N., Wittmann, C., Maroy, O., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: Superlinear threshold detectors in quantum cryptography. Phys. Rev. Lett. 84, 032320 (2011), doi:10.1103/PhysRevA.84.032320Google Scholar
  14. 14.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Avoiding the blinding attack in QKD; REPLY (COMMENT). Nature Photonics 4, 801 (2010), doi:10.1038/nphoton.2010.278CrossRefGoogle Scholar
  15. 15.
    Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009), doi:10.1088/1367-2630/11/6/065003Google Scholar
  16. 16.
    Kish, L.B., Mingesz, R., Gingl, Z.: Unconditionally secure communication via wire. SPIE Newsroom (2007), doi:10.1117/2.1200709.0863Google Scholar
  17. 17.
    Johnson, J.B.: Thermal agitation of electricity in conductors. Nature 119, 50–51 (1927)CrossRefGoogle Scholar
  18. 18.
    Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928)CrossRefGoogle Scholar
  19. 19.
    Born, M., Heisenberg, W., Jordan, P.: Quantum mechanics II. Z. Phys. 35, 557–615 (1926)MATHCrossRefGoogle Scholar
  20. 20.
    Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799–1802 (2000)CrossRefGoogle Scholar
  21. 21.
    Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)CrossRefGoogle Scholar
  22. 22.
    Kish, L.B.: Thermal noise engines. Chaos Solit. Fract. 44, 114–121 (2011), CrossRefGoogle Scholar
  23. 23.
    Kish, L.B.: Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states. Phys. Lett. A 373, 911–918 (2009)MATHCrossRefGoogle Scholar
  24. 24.
    Kish, L.B., Khatri, S., Sethuraman, S.: Noise-based logic hyperspace with the superposition of 2^N states in a single wire. Phys. Lett. A 373, 1928–1934 (2009)MATHCrossRefGoogle Scholar
  25. 25.
    Bezrukov, S.M., Kish, L.B.: Deterministic multivalued logic scheme for information processing and routing in the brain. Phys. Lett. A 373, 2338–2342 (2009)MATHCrossRefGoogle Scholar
  26. 26.
    Gingl, Z., Khatri, S., Kish, L.B.: Towards brain-inspired computing. Fluct. Noise Lett. 9, 403–412 (2010)CrossRefGoogle Scholar
  27. 27.
    Kish, L.B., Khatri, S., Horvath, T.: Computation using noise-based logic: Efficient string verification over a slow communication channel. Eur. J. Phys. B 79, 85–90 (2011), CrossRefGoogle Scholar
  28. 28.
    Peper, F., Kish, L.B.: Instantaneous, non-squeezed, noise-based logic. Fluct. Noise Lett. 10, 231–237 (2011), CrossRefGoogle Scholar
  29. 29.
    Wen, H., Kish, L.B., Klappenecker, A., Peper, F.: New noise-based logic representations to avoid some problems with time complexity. Fluct. Noise Lett. (June, in press, 2012 issue),
  30. 30.
    Mullins, J.: Breaking the noise barrier. New Scientist (2780) (September 29, 2010),
  31. 31.
    Kish, L.B.: Totally secure classical communication utilizing Johnson(-like) noise and Kirchhoff’s law. Phys. Lett. A 352, 178–182 (2006)MATHCrossRefGoogle Scholar
  32. 32.
    Cho, A.: Simple noise stymie spies without quantum weirdness. Science 309, 2148 (2005),
  33. 33.
    Kish, L.B.: Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)-noise cipher and expansion by voltage-based security. Fluct. Noise Lett. 6, L57–L63 (2006),
  34. 34.
    Mingesz, R., Gingl, Z., Kish, L.B.: Johnson(-like)-noise-Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Phys. Lett. A 372, 978–984 (2008)MATHCrossRefGoogle Scholar
  35. 35.
    Palmer, D.J.: Noise encryption keeps spooks out of the loop. New Scientist (2605), 32 (2007),
  36. 36.
    Kish, L.B., Horvath, T.: Notes on recent approaches concerning the Kirchhoff-law-Johnson-noise-based secure key exchange. Phys. Lett. A 373, 901–904 (2009)CrossRefGoogle Scholar
  37. 37.
    Scheuer, J., Yariv, A.: A classical key-distribution system based on Johnson (like) noise – How secure? Phys. Lett. A 359, 737–740 (2006)MATHCrossRefGoogle Scholar
  38. 38.
    Kish, L.B., Scheuer, J.: Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator. Phys. Lett. A 374, 2140–2142 (2010)MATHCrossRefGoogle Scholar
  39. 39.
    Kish, L.B.: Response to Scheuer-Yariv: A classical key-distribution system based on Johnson (like) noise – How secure? Phys. Lett. A 359, 741–744 (2006)MATHCrossRefGoogle Scholar
  40. 40.
    Hao, F.: Kish’s key exchange scheme is insecure. IEE Proc. Inform. Sec. 153, 141–142 (2006)CrossRefGoogle Scholar
  41. 41.
    Kish, L.B.: Response to Feng Hao’s paper Kish’s key exchange scheme is insecure. Fluct. Noise Lett. 6, C37–C41 (2006)Google Scholar
  42. 42.
    Liu, P.L.: A new look at the classical key exchange system based on amplified Johnson noise. Phys. Lett. A 373, 901–904 (2009)MATHCrossRefGoogle Scholar
  43. 43.
    Horvath, T., Kish, L.B., Scheuer, J.: Effective privacy amplification for secure classical communications. Europhys. Lett. 94, 28002 (2011), CrossRefGoogle Scholar
  44. 44.
    Kish, L.B., Saidi, O.: Unconditionally secure computers, algorithms and hardware. Fluct. Noise Lett. 8, L95–L98 (2008)Google Scholar
  45. 45.
    Kish, L.B., Mingesz, R.: Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise. Fluct. Noise Lett. 21, C9-C21 (2006)Google Scholar
  46. 46.
    Kish, L.B., Peper, F.: Information networks secured by the laws of physics. IEICE Trans. Commun. E95-B, 1501–1507 (2012)Google Scholar
  47. 47.
  48. 48.
    Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983)CrossRefGoogle Scholar
  49. 49.
    Bennett, C.H., Brassard, G.: Quantum cryptography and its application to provably secure key expansion, public-key distribution, and coin-tossing. In: Proc. IEEE Internat. Symp. Inform. Theor., St-Jovite, Canada, p. 91 (1983)Google Scholar
  50. 50.
    Brassard, G.: Brief history of quantum cryptography: A personal perspective. In: Proc. IEEE Information Theory Workshop on Theory and Practice in Information Theoretic Security, Awaji Island, Japan, pp. 19–23 (2005),
  51. 51.
    Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010), CrossRefGoogle Scholar
  52. 52.
    Liang, Y., Poor, H.V., Shamai, S.: Information Theoretic Security. Foundations and Trends in Communications and Information Theory 5, 355–580 (2008), doi:10.1561/0100000036MATHCrossRefGoogle Scholar
  53. 53.
    Vincent Poor, private communicationsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Mingesz
    • 1
  • L. B. Kish
    • 2
  • Z. Gingl
    • 1
  • C. G. Granqvist
    • 3
  • H. Wen
    • 2
    • 4
  • F. Peper
    • 5
  • T. Eubanks
    • 6
  • G. Schmera
    • 7
  1. 1.Department of Technical InformaticsUniversity of SzegedSzegedHungary
  2. 2.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  4. 4.College of Electrical and Information EngineeringHunan UniversityChangshaChina
  5. 5.National Institute of Information and Communication TechnologyKobeJapan
  6. 6.Sandia National LaboratoriesAlbuquerqueUSA
  7. 7.Space and Naval Warfare Systems CenterSan DiegoUSA

Personalised recommendations