On the Use of Artificial Neural Networks for Biomedical Applications

  • Maria Graça Ruano
  • António E. Ruano
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)


Artificial Neural Networks (ANN) are being extensively used in many application areas due to their ability to learn and generalize from data, similarly to a human reaction. This paper reports the use of ANN as a classifier, dynamic model, and diagnosis tool. The examples presented include blood flow emboli classification based on transcranial ultrasound signals, tissue temperature modeling based on imaging transducer’s raw data and identification of ischemic cerebral vascular accident areas based on computer tomography images. In all case studies the performance of ANN proves to produce very accurate results, encouraging the more frequent use of these computational intelligent techniques on medical applications.


biomedical applications artificial neural networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fan, L., Evans, D.H.: Extracting instantaneous mean frequency information from Doppler signals using the Wigner distribution function. Ultrasound Med. Biology 20, 429–443 (1994)CrossRefGoogle Scholar
  2. 2.
    Devuyst, G., Vesin, J.-M., Despland, P.-A., Bogousslavsky, J.: The matching pursuit: a new method of characterizing microembolic signals? Ultrasound Med. Biology 26, 1051–1056 (2000)CrossRefGoogle Scholar
  3. 3.
    Matos, S., Leiria, A.I., Ruano, M.G.: Blood flow parameters evaluation using wavelet transforms. World Congress on Medical Physics and Biomedical Engineering, 4235-52803.pdf, CD-ROM, Chicago, USA (2000)Google Scholar
  4. 4.
    Kemény, V., Droste, D.W., Hermes, S., Nabavi, D.G., Schulte-Altedorneburg, G., Siebler, M., Ringelstein, B.: Automatic embolus detection by a neural network. Stroke 30, 807–810 (1999)CrossRefGoogle Scholar
  5. 5.
    Sérgio Matos, A.E., Ruano, M., Ruano, G., Evans, D.H.: Neural network classification of cerebral embolic signals. In: 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, paper 1123, track 4.3, CDROM, Instambul, Turkey (2001)Google Scholar
  6. 6.
    Teixeira, C.A., Graça Ruano, M., Ruano, A.E.: Emboli classification using RBF neural networks. In: Proceedings of CONTROLO 2004, Faro, Portugal, June 7-9, pp. 630–635 (2004)Google Scholar
  7. 7.
    Wardlaw, J.: Radiology of Stroke. J. Neurol Neurosurg Psychiatry 70(suppl. I), i7–i11 (2001)Google Scholar
  8. 8.
    Robb, W.: Perspective on the First 10 Years of the CT Scanner Industry. Academic Radiology 10(7), 756–760 (2003)CrossRefGoogle Scholar
  9. 9.
    Arthur, R.M., Straube, W.L., Trobaugh, J.W., Moros, E.G.: Noninvasive temperature estimation of hyperthermia temperatures with ultrasound. Int. J. Hyperthermia 21, 589–600 (2005)CrossRefGoogle Scholar
  10. 10.
    Arthur, R.M., Straube, W.L., Starman, J.D., Moros, E.G.: Noninvasive temperature estimation based on the energy of backscattered ultrasound. Medical Physics 30, 1021–1029 (2005)CrossRefGoogle Scholar
  11. 11.
    Zell, K., Sperl, J.I., Vogel, M.W., Niessner, R., Haisch, C.: Acoustical Properties of Selected Tissue Phantom Materials for Ultrasound Imaging. Physics in Medicine and Biology 52, 475–484 (2007)CrossRefGoogle Scholar
  12. 12.
    Teixeira, C.A., Cortela, G., Gomez, H., Ruano, M.G., Ruano, A.E., Negreira, C., Pereira, W.C.A.: Temperature models of a homogeneous medium under therapeutic ultrasound. Brazilian Journal of Biomedical Engineering 20(2-3), 97–101 (2004)Google Scholar
  13. 13.
    Teixeira, C.A., Ruano, A.E., Ruano, M.G., Pereira, W.C.A., Negreira, C.: Non-invasive Temperature prediction of in-vitro therapeutic ultrasound signals using neural networks. Medical and Biological Engineering and Computing 44(1-2), 111–116 (2006)CrossRefGoogle Scholar
  14. 14.
    Teixeira, C.A., Graça Ruano, M., Ruano, A.E., Pereira, W.C.A.: A soft-computing methodology for non-invasive time-spatial temperature estimation. IEEE Transactions on Biomedical Engineering 55(2), 572–580 (2008)CrossRefGoogle Scholar
  15. 15.
    Teixeira, C.A., Pereira, W.C.A., Ruano, A.E., Graça Ruano, M.: On non-invasive multi-layer temperature estimation using soft-computing methods. Ultrasonics 50(1), 32–43 (2010)CrossRefGoogle Scholar
  16. 16.
    Zhang, Q., Benveniste, A.: Wavelet Networks. IEEE Trans. Neural Networks 3, 889–898 (1992)CrossRefGoogle Scholar
  17. 17.
    Zhang, Q.: Using wavelet network in nonparametric estimation. IEEE Trans. Neural Networks 8, 227–236 (1997)CrossRefGoogle Scholar
  18. 18.
    Ruano, A.E., Jones, D.I., Fleming, P.J.: A new formulation of the learning problem for a neural network controller. In: IEEE Conference on Decision and Control, Brighton, U.K., pp. 865–866 (1991)Google Scholar
  19. 19.
    Ferreira, P.M., Faria, E.A., Ruano, A.E.: Neural network models in greenhouse air temperature prediction. Neurocomputing 43(1-4), 51–75 (2002)MATHCrossRefGoogle Scholar
  20. 20.
    Matos, S., Ruano, M.G., Ruano, A.E.: Embolic signals characterization using wavelet neural networks. In: Proc. of the BioEng 2001, paper 41. University of Algarve (2001)Google Scholar
  21. 21.
    Chinrungrueng, C., Séquin, C.H.: Optimal adaptive k-means algorithm with dynamic adjustment of learning rate. IEEE Transactions on Neural Networks 6(1), 157–169 (1995)CrossRefGoogle Scholar
  22. 22.
    Ruano, A.E., Ferreira, P.M., et al.: An Overview of Nonlinear Identification and Control with Neural Networks. In: Ruano, A.E. (ed.) Intelligent Control Using Intelligent Computational Techniques. IEE Control Series (2005)Google Scholar
  23. 23.
    Haykin, S.: Learning In Neural Networks. A Comprehensive Foundation. Prentice-Hall (1998)Google Scholar
  24. 24.
    Levenberg, K.: A Method for the Solution of Certain Problems in Least Squares. Quarterly Applied Mathematics 2, 164–168 (1944)MathSciNetMATHGoogle Scholar
  25. 25.
    Viola, F., Walker, W.F.: A spline-based algorithm for continuous time-delay estimation using sampled data. IEEE Trans. Ultrasonics &Ferroelectric Freq. Control 52, 80–93 (2005)CrossRefGoogle Scholar
  26. 26.
    Ferreira, P.M., Ruano, A.E., Fonseca, C.M.: Genetic assisted selection of RBF model structures for greenhouse inside air temperature prediction. In: Proc. IEEE Conference on Control Applications, Istambul, Turkey, vol. 1, 2, pp. 576–581 (2003)Google Scholar
  27. 27.
    Ribeiro, L., Ruano, A.E., Graça Ruano, M., Pedro, M.: Neural networks as-sisted diagnosis of ischemic CVA’s through CT scan. In: Proceedings of the IEEE International Symposium on Intelligent Signal Processing, Spain, pp. 223–227 (2007)Google Scholar
  28. 28.
    Ribeiro, L., Ruano, A.E.B., Ruano, M.G., Ferreira, P., Várkonyi-Kóczy, A.R.: Improving the Diagnosis of Ischemic CVA’s through CT Scan with Neural Networks. In: Proceedings of the 2nd IEEE International Workshop on Soft Computing Applications, Hungary, Romania (2007)Google Scholar
  29. 29.
    Teixeira, C.A., Graça Ruano, M., Pereira, W.C.A., Ruano, A.E.: Temperature modelling of an homogeneous medium using genetically selected RBF(LIC). In: Proceedings of the 16th IFAC World Congress, paper no 2387 DVD, July 4-8. Elsevier, Prague (2005)Google Scholar
  30. 30.
    Teixeira, C.A., Ruano, A.E., Graça Ruano, M., Pereira, W.C.A.: Generalization assessment of non-invasive data-driven temperature estimators from therapeutic ultrasound. Brazilian Journal of Biomedical Engineering 23(2), 143–151 (2007)Google Scholar
  31. 31.
    Teixeira, C.A., Graça Ruano, M., Ruano, A.E., Pereira, W.C.A.: Multilayered non-invasive temperature estimation from backscattered ultrasound. In: Proceedings of the Acoustics 2008, France (2008)Google Scholar
  32. 32.
    Teixeira, C.A., Pereira, W.C.A., Ruano, A.E., Graça Ruano, M.: NARX structures for non-invasive temperature estimation in non-homogeneous media. In: Proceedings of the IEEE International Symposium on Intelligent Signal Processing (WISP 2007), Spain, pp. 169–174 (2007)Google Scholar
  33. 33.
    Teixeira, C.A., Graça Ruano, M., Ruano, A.E., Pereira, W.C.A.: Neuro-genetic non-invasive temperature estimation: intensity and spatial prediction. Artificial Intelligence in Medicine 43(2), 127–139 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maria Graça Ruano
    • 1
    • 2
  • António E. Ruano
    • 3
  1. 1.CISUCUniversity of CoimbraCoimbraPortugal
  2. 2.The University of AlgarveFaroPortugal
  3. 3.Centre for Intelligent SystemsIDMEC, IST and the University of AlgarveFaroPortugal

Personalised recommendations