Advertisement

A FPGA Floating Point Interpolator

  • Marius M. Bălaş
  • Marius Socaci
  • Onisifor Olaru
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)

Abstract

The fuzzy-interpolative systems, a class of the Sugeno family fuzzy controllers, merge the linguistic representation of the knowledge with the effective interpolative implementations. Their application is immediate in any possible software environment, by look-up-table structures. However, their hardware implementation is not so easy. This paper is reporting a little step forward for the application of the fuzzy-interpolative systems in the field of the embedded systems: a specific FPGA block that is able to perform floating point interpolations, which can stand for a core of a future FPGA fuzzy-interpolative controller.

Keywords

fuzzy-interpolative system floating point interpolation FPGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: Interpolative reasoning as a common basis for inference in fuzzy logic, neural network theory and the calculus of fuzzy If/Then rules. Opening Talk. In: Proceedings of 2nd International Conference on Fuzzy Logic and Neural Networks, Iizuka, pp. XIII–XIV (1992)Google Scholar
  2. 2.
    Bauer, P., Klement, E.P., Moser, B., Leikermoser, A.: Modeling of Control Functions by Fuzzy Controllers. In: Nguyen, H.T., Sugeno, M., Tong, R., Yager, R. (eds.) Theoretical Aspects of Fuzzy Control, pp. 91–116. John Wiley & Sons (1995)Google Scholar
  3. 3.
    Dale, S., Dragomir, T.-L.: Interpolative-Type Control Solutions. In: Balas, V.E., Fodor, J., Várkonyi-Kóczy, A.R. (eds.) Soft Computing Based Modeling in Intelligent Systems. SCI, vol. 196, pp. 169–203. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Dale, S., Bara, A., Gabor, G.: Comparative study case for interpolative-type synthetic input controllers on a ball and beam system. In: Proceedings of the 10th WSEAS International Conference on Fuzzy Systems FS 2009, Prague, pp. 76–83 (2009)Google Scholar
  5. 5.
    Balas, M.M.: The Fuzzy-Interpolative Methodology. In: Balas, V.E., Fodor, J., Várkonyi-Kóczy, A.R. (eds.) Soft Computing Based Modeling in Intelligent Systems. SCI, vol. 196, pp. 145–167. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Andina, J.J., Moure, M.J., Valdes, M.D.: Features, Design Tools, and Application Domains of FPGAs. IEEE Transactions on Industrial Electronics 54(4), 1810–1823 (2007)CrossRefGoogle Scholar
  7. 7.
    Computer Engineering Research Group - University of Toronto: The FPGA Place-and-Route Challenge, http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html
  8. 8.
    Balas, M.M., Sajgo, B.A., Belean, P.: On the FPGA Implementation of the Fuzzy-Interpolative Systems. In: The 5th International Symposium on Computational Intelligence and Intelligent Informatics ISCII 2011, Floriana, Malta, September 15-17, pp. 139–142 (2011)Google Scholar
  9. 9.
    IEEE Computer Society: IEEE Std 754TM 2008. IEEE Standard for Floating Point Arithmetic. IEEE Inc., New York (2008) Google Scholar
  10. 10.
    Xilinx: ISE In-Depth Tutorial (January 18, 2012)Google Scholar
  11. 11.
    Socaci, M.: Aplicaţie VHDL pentru calcul în virgulă mobilă pe FPGA. Master disertation, University Aurel Vlaicu of Arad (2012)Google Scholar
  12. 12.
    Kilts, S.: Design, Architecture, Implementation and Optimization. Wiley Interscience (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marius M. Bălaş
    • 1
  • Marius Socaci
    • 1
  • Onisifor Olaru
    • 2
  1. 1.“Aurel Vlaicu” University of AradAradRomania
  2. 2.“Constantin Brancusi” University of Tîrgu JiuTargu-JiuRomania

Personalised recommendations