Dynamic Modeling and Computer Simulation of 3D Objects Grasping

  • Rim Boughdiri
  • Hala Bezine
  • Nacer K. M’Sirdi
  • Aziz Naamane
  • Adel M. Alimi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)


Among the essentials functionalities of several robotic systems are grasping and manipulating of objects by multi-fingered robot hands. Therefore many researchers have studied features of the two major closely related tasks.

In this paper, we consider the problem of mathematical modeling of the robotic hand, the object and the physical interactions between the object and fingers under sliding constraints.

Development of a numerical simulator for 3-D object grasping and manipulation by multi-fingered robot hands is an active area in robotic field. By integrating the derived Lagrange’s equations of motion of the fingers and object under sliding constrains in the 3D simulator HandGrasp that is designed and developed at REGIM (Laboratory of REsearch Group on Intelligent Machine), numerical simulation results of 3-D object pinching and manipulation based on the impedance control law. This simulation results show the validity of mathematical modeling and the control method


Multi-fingered robot hand Dynamic Modeling Model-based control 3D Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, A., Allen, P.K.: Graspit!: A Versatile Simulator for Robotic Grasping. IEEE Robotics and Automation Magazine 11(4), 110–122 (2004)CrossRefGoogle Scholar
  2. 2.
    Awaad, I., Leon, B.: XPERSim: A Simulator for Robot Learning by Experimentation. In: Proceedings of the 1st International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 5–16 (2008)Google Scholar
  3. 3.
    Peña-Pitarch, E., Yang, J., Abdel-Malek, K.: Virtual Human Hand: Grasping and Simulation. In: Proceedings of the 2nd International Conference on Digital Human Modeling: Held as Part of HCI International, pp. 140–149 (July 2009)Google Scholar
  4. 4.
    Boughdiri, R., Bezine, H., M’Sirdi, N.K., Naamane, A., Alimi, A.M.: Dynamic modeling of a multi-fingered robot hand in free motion. In: International Multi-Conference on Systems, Signals & Devices, SSD 2011, pp. 1–7 (2011)Google Scholar
  5. 5.
    Hogan, N.: Impedance control: An approach to manipulation, parts I-III. ASME Journal of Dynamic Systems, Measurement, and Control 107(1), 1–24 (1985)MATHCrossRefGoogle Scholar
  6. 6.
    Yoshikawa, T., Sugie, T., Tanaka, M.: Dynamic hybrid control of robot manipulators: controller design and experiment. IEEE Journal of Robotics and Automation 4(6), 699–705 (1988)CrossRefGoogle Scholar
  7. 7.
    Kawasaki, H., Ueki, S., Ito, S.: Decentralized adaptive coordinated control of multiple robot arms without using a force sensor. Automatica 42, 481–488 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ueki, S., Kawasaki, H., Mouri, T.: Adaptive coordinated control of multi-fingered robot hand. Journal of Robotics and Mechatronics 21(1), 36–43 (2009)Google Scholar
  9. 9.
    Al-Gallaf, E.: Neural network based inverse kinematics for multi-finger hand control. In: IASTED Internat. Conf. in Neural Networks, Pittsburgh, PA, pp. 82–87 (2000)Google Scholar
  10. 10.
    Dominguez-Lopez, J.A., Vila-Rosado, D.N.: Hierarchical fuzzy control to ensure stable grasping. In: Seventh Mexican International Conference on Computer Science (ENC 2006), pp. 37–43 (2006)Google Scholar
  11. 11.
    Canudas de Witt, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer (1996)Google Scholar
  12. 12.
    Beurier, G.: Modélisation, analyse et contrôle de systèmes mécaniques avec interaction avec l’environnement: Aide à la conduite d’un tunnelier pour un forage en continu., PhD Thesis, UPMC, Paris 6 (1999)Google Scholar
  13. 13.
    Yoshikawa, T.: Multifingered Robot Hands: Control for Grasping and Manipulation (Review Paper). Annual Reviews in Control 34(2), 199–208 (2010)CrossRefGoogle Scholar
  14. 14.
    Walha, C., Bezine, H., M’sirdi, N.K., Naamane, A., Alimi, A.M.: HandGrasp: a new simulator for human grasping. In: Workshop on Autonomous Grasping at IEEE International Conference on Robotics and Automation, ICRA 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rim Boughdiri
    • 1
    • 2
  • Hala Bezine
    • 1
  • Nacer K. M’Sirdi
    • 2
  • Aziz Naamane
    • 2
  • Adel M. Alimi
    • 1
  1. 1.REGIM: REsearch Group on Intelligent MachinesUniversity of Sfax, National Engineering School of Sfax (ENIS)SfaxTunisia
  2. 2.LSISCNRS UMR 7296. Dom. Universitaire St JérômeMarseilleFrance

Personalised recommendations