Model Predictive Control for Inside Temperature of an Energy Efficient Building

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)

Abstract

The paper presents the development and implementation of a model predictive control (MPC) used for inside temperature control of a building. The inside temperature is tracking a prescribed reference inside a comfort zone define by the optimization problem implementing offset free control through a Kalman filter state estimator. The MPC is validated by simulation and experiment using a building thermal model, a 24 hour ahead predicted solar irradiance and ambient temperature and measured actual weather data and inside temperature for the closed loop simulation operation.

Keywords

Model predictive control energy efficient building Kalman filter offset free control quadratic program 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Commission eurostat - Energy Consumption Statistics, http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Consumption_of_energy
  2. 2.
    Oldewurtel, F., Parisio, A., Jones, C.N., Morari, M., Gyalistras, D., Gwerder, M., Stauch, V., Lehmann, B., Wirth, K.: Energy Efficient Building Climate Control using Stochastic Model Predictive Control and Weather Predictions. In: America Control Conference, pp. 5100–5105 (2010)Google Scholar
  3. 3.
    Balan, R., Stan, S.D., Lapusan, C.: A Model Based Predictive Control Algorithm for Building Temperature Control. In: 3rd IEEE International Conference on Digital Ecosystems and Technologies, pp. 540–545. IEEE Press (2009)Google Scholar
  4. 4.
    Halvgaard, R., Niels, K.P., Madsen, H., Jørgensen, J.B.: Economic Model Predictive Control for Building Climate Control in a Smart Grid. In: IEEE PES Innovative Smart Grid Technologies (ISGT). IEEE Press (2012)Google Scholar
  5. 5.
    Liu, S., Henze, G.P.: Impact of Modeling Accuracy on Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory. ASHRAE Transactions, 151–163 (2004)Google Scholar
  6. 6.
    Prívara, S., Široký, J., Ferkl, L., Cigler, J.: Model predictive control of a building heating system: The first experience. Energy & Buildings 43(2-3), 564–572 (2011)CrossRefGoogle Scholar
  7. 7.
    Erickson, V., Lin, Y., Kamthe, A., Rohini, B., Surana, A., Cerpa, A., Sohn, M., Narayanan, S.: Energy efficient building environment control strategies using real-time occupancy measurements. In: 1st ACM Workshop Embedded Sensing Systems for Energy Efficiency in Buildings, pp. 19–24 (2009)Google Scholar
  8. 8.
    Hazyuk, I., Ghiaus, C., Penhouet, D.: Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part II Control Algorithm. Building and Environment Journal, 388–394 (2012)Google Scholar
  9. 9.
    Bacher, P., Thavlov, A., Madsen, H.: Models for Energy Performance Analysis. Technical report, Informatics and Mathematical Modeling Technical University of Denmark (2010)Google Scholar
  10. 10.
    Pannochia, G., Rawlings, J.: Disturbance Models for Offset-Free Model Predictive Control. AIChE Journal 49(2), 426–437 (2003)CrossRefGoogle Scholar
  11. 11.
    Huusom, J.K., Poulsen, N.K., Jørgensen, S.B., Jørgensen, J.B.: Tuning of Methods for Offset Free MPC based on ARX Model Representations. In: Proceedings of the American Control Conference, pp. 2255–2360 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Automation and Applied Informatics“Politehnica”University of TimisoaraTimisoaraRomania

Personalised recommendations