Using Fuzzy Logic to Determine If the Traffic Is Constant or Not in DTF Method

  • Emanuel Ciprian Sasu
  • Octavian Prostean
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 195)


This paper applies Fuzzy Logic in Destination Traffic Fingerprint Method, to the process of establishing if the traffic to a specific IP destination is constant. In order to obtain strong fingerprints, it is absolutely necessary to distinguish between constant traffic and non-constant traffic.


DTF Method MAC Spoofing Intrusion Detection Fuzzy Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sasu, E.C., Prostean, O.: Using Constant Traffic to Specific IP Destinations for Detecting Spoofed MAC Addresses in Local Area Networks. In: IEEE International Joint Conferences on Computational Cybernetics and Technical Informatics, Timisoara, Romania, pp. 677–681 (2010)Google Scholar
  2. 2.
    Sasu, E.C., Prostean, O.: Testing DTF Method for Applicability in a Real Environment. In: 7th IEEE International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, pp. 285–289 (2012)Google Scholar
  3. 3.
    Wang, H., Jin, C., Shin, K.G.: Defense Against Spoofed IP Traffic Using Hop-Count Filtering. IEEE/ACM Transactions on Networking 15(1), 40–53 (2006)CrossRefGoogle Scholar
  4. 4.
    Sheng, Y., Tan, K., Chen, G., Kotz, D., Campbell, A.: Detecting 802.11 MAC Layer Spoofing Using Received Signal Strength. In: IEEE INFOCOM 2008 Proceedings, Phoenix, USA, pp. 2441–2449 (2008)Google Scholar
  5. 5.
    Chandrasekaran, G., Francisco, J., Ganapathy, V., Gruteser, M., Trappe, W.: Detecting Identity Spoofs in IEEE 802.11e Wireless Networks. In: IEEE GLOBECOM 2009 Proceedings, Honolulu, Hawaii, USA (2009)Google Scholar
  6. 6.
    Goel, S., Kumar, S.: An Improved Method of Detecting Spoofed Attack in Wireless LAN. In: First International Conference on Networks & Communications, Chennai, India, pp. 104–108 (2009)Google Scholar
  7. 7.
    Martinez, A., Zurutuza, U., Uribeetxeberria, R., Fernandez, M., Iizarraga, J., Serna, A., Velez, I.: Beacon Frame Spoofing Attack Detection in IEEE 802.11 Networks. In: The Third International Conference on Availability, Reliability and Security, Barcelona, Spain, pp. 520–525 (2008)Google Scholar
  8. 8.
    Huang, H., Chang, K., Lu, Y., Yang, C.: Countermeasures against MAC Address Spoofing in Public Wireless Networks using Lightweight Agents. In: 5th International ICST Conference on Wireless Internet, Singapore, China (2010)Google Scholar
  9. 9.
    Bansal, R., Tiwari, S., Bansal, D.: Non-Cryptographic Methods of MAC Spoof Detection in Wireless LAN. In: 6th International Conference on Natural Language Processing, Pune, India (2008)Google Scholar
  10. 10.
    Chumchu, P., Saelim, T.: A New MAC Address Spoofing Detection Algorithm using PLCP Header. In: The International Conference on Information Networking 2011, Kuala Lumpur, Malaysia, pp. 48–53 (2010)Google Scholar
  11. 11.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Zadeh, L.A.: The role of Fuzzylogic in modeling, identification and control. Modeling, Identification and Control 15(3), 191–203 (1994)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    MathWorks, Fuzzy Logic Toolbox,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.“Politehnica” UniversityTimisoaraRomania

Personalised recommendations