Modeling, Dynamics and Control of an Extended Elastic Actuator in Musculoskeletal Robot System

  • Fuben He
  • Yande Liang
  • Haohan Zhang
  • Enrico Pagello
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)


The conventional actuator of robot needs to be improved since the bandwidth of motor is limited and it cannot provide enough flexibility to perform the compliance in robot locomotion interacted with environment. In this paper, we present a novel elastic actuator so as to enhance the range of robot activities for adaptability. Considering the characteristics of elasticity and the demands in reality, a feasible study model is developed and constructed. According to the theory of Newton-Euler dynamics equations, the dynamics of model is mathematically described. To avoid unpredictable errors and manage joint oscillation in advance, we also employ a feedforward controller to operate the actuator. Moreover, the actuator can be regarded as the robotic “muscle-tendon” for its function is similar to the muscle-tendon model in human body. Therefore, we apply this actuation to a virtual robot arm based on the Musculoskeletal Robot System (MRS) to evaluate the performances of elastic actuators. The results of experiments indicate that this actuation is effective and contributed to realize the compliant locomotion.


modeling dynamics elastic actuator musculoskeletal mechanism feedforward control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klug, S., Lens, T., von Stryk, O., Möhl, B., Karguth, A.: Biologically Inspired Robot Manipulator for New Applications in Automation Engineering. In: Proc. of Robotik 2008, Nr. 2012, VDI Wissensforum GmbH (June 2008)Google Scholar
  2. 2.
    Hayward, V.: Design of a Hydraulic Robot Shoulder Based on a Combinatorial Mechanism. In: Yoshikawa, T., Miyazaki, F. (eds.) Experimental Robotics III. LNCIS, vol. 200, pp. 295–309. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Salisbury, K., Eberman, B., Levin, M., Townsend, W.: The Design and Control of an Experimental Whole-Arm Manipulator. In: Proc. 5th Int. Symp. on Robotics Research, pp. 233–241 (February 1991)Google Scholar
  4. 4.
    Förg, D., Ulbirch, H., Seyfarth, A.: Study of a Bipedal Robot with Elastic Elements. In: 41st Int. Symp. on Robotics/6th German Conf. on Robotics, pp. 689–695 (June 2010)Google Scholar
  5. 5.
    Hollander, K., Ilg, R., Sugar, T., Herring, D.: An Efficient Robotic Tendon for Gait Assistance. Journal of Biomechanical Engineering 128(5), 788–791 (2006)CrossRefGoogle Scholar
  6. 6.
    Lens, T., Kunz, J., Trommer, C., Karguth, A., von Stryk, O.: BioRob-Arm: A Quickly Deployable and Intrinsically Safe, Light-Weight Robot Arm for Service Robotics Applications. In: 41st Int. Symp. on Robotics/6th German Conf. on Robotics, pp. 905–910 (June 2010)Google Scholar
  7. 7.
    Tomei, P.: A Simple PD Controller for Robots with Elastic Joints. IEEE Transactions on Automatic Control 36, 1208–1213 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pratt, G., Williamson, M.: Series Elastic Actuators. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 1, pp. 399–406 (1995)Google Scholar
  9. 9.
    Robinson, D., Pratt, J., Paluska, D., Pratt, G.: Series Elastic Actuator Development for a Biomimetic Walking Robot. In: IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 561–568 (1999)Google Scholar
  10. 10.
    Van Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Review of Actuators with Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications. IEEE Robotics and Automation Magazine 16(3), 81–94 (2009)CrossRefGoogle Scholar
  11. 11.
    Radkhah, K., Lens, T., Seyfarth, A., von Stryk, O.: On the Influence of Elastic Actuation and Monoarticular Structures in Biologically Inspired Bipedal Robots. In: Proc. 2010 IEEE Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 389–394 (2010)Google Scholar
  12. 12.
    Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T., Hollander, K.: Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-compliant Actuators. The Int. Journal of Robotics Research 28, 90–103 (2009)CrossRefGoogle Scholar
  13. 13.
    Zajac, F.: Muscle and Tendon Properties Models Scaling and Application to Biomechanics and Motor Control. Critical Reviews in Biomedical Engineering 17(4), 359–410 (1989)Google Scholar
  14. 14.
    Spong, M.: Modeling and Control of Elastic Joint Robots. ASME Journal of Dynamic Systems, Measurement and Control 109, 310–319 (1987)MATHCrossRefGoogle Scholar
  15. 15.
    Edwards, C., Penney, D.: Differential Equations and Boundary Value Problems Computing and Modeling, 4th edn. Pearson Prentice Hall (2007)Google Scholar
  16. 16.
    Radkhah, K., Kurowski, S., Lens, T., von Stryk, O.: Compliant Robot Actuation by Feedforward Controlled Emulated Spring Stiffness. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 497–508. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fuben He
    • 1
  • Yande Liang
    • 1
  • Haohan Zhang
    • 1
  • Enrico Pagello
    • 2
  1. 1.School of Mechanical EngineeringDalian University of TechnologyDalianChina
  2. 2.IAS-Lab, Dept. of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations