Advertisement

Minimalist CPG Model for Inter- and Intra-limb Coordination in Bipedal Locomotion

  • Dai Owaki
  • Takeshi Kano
  • Atsushi Tero
  • Masakazu Akiyama
  • Akio Ishiguro
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)

Abstract

Inter- and intra-limb coordination for bipedal locomotion were numerically investigated using a “minimalist” bipedal robot model and an unconventional central pattern generator (CPG)-based control scheme that exploits local sensory feedback generated from the discrepancy between the control system, mechanical system, and environment. The simulation results showed that a bipedal robot controlled by the proposed controller exhibits walking and running gaits dependent only on one parameter: the angular velocity of the oscillators. Interestingly, spontaneous inter- and intra-limb coordination were found to be inherent to the proposed design scheme for stable bipedal locomotion. These findings are expected to lead to a useful methodology for robots to generate stable and adaptive locomotion.

Keywords

bipedal locomotion inter- and intra-limb coordination discrepancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shik, M.L., Severin, F.V., Orlovskii, G.N.: Control of Walking and Running by Means of Electrical Stimulation of the Midbrain. Biophysics 11, 756–765 (1966)Google Scholar
  2. 2.
    Grillner, S.: Neurobiological Bases of Rhythmic Motor Acts in Vertebrates. Science 228, 143–149 (1985)CrossRefGoogle Scholar
  3. 3.
    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized Control of Bipedal Locomotion by Neural Oscillators. Biological Cybernetics 65, 147–159 (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts. Int. J. Robotics Res. 22, 187–202 (2003)CrossRefGoogle Scholar
  5. 5.
    Aoi, S., Tsuchiya, K.: Stability Analysis of a Simple Walking Model Driven by an Oscillator with a Phase Reset Using Sensory Feedback. IEEE Transactions on Robotics 22, 391–397 (2006)CrossRefGoogle Scholar
  6. 6.
    Righetti, L., Ijspeert, A.J.: Pattern Generators with Sensory Feedback for the Control of Quadruped Locomotion. In: Proc. of ICRA 2008, pp. 819–824 (2008)Google Scholar
  7. 7.
    Diedrich, F.J., Warren, W.H.: Why Change Gaits? Dynamics of the Walk-Run Transition. Journal of Experimental Psychology 21, 183–202 (1995)Google Scholar
  8. 8.
    McGeer, T.: Passive bipedal running. Proc. of the Royal Society of London, Series B, Biological Science 240, 107–134 (1990)CrossRefGoogle Scholar
  9. 9.
    Owaki, D., Osuka, K., Ishiguro, A.: On the embodiment that enables passive dynamic bipedal running. In: Proc. of ICRA 2008, pp. 341–346 (2008)Google Scholar
  10. 10.
    Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R., Ishiguro, A.: Fully Decentralized Control of a Soft-bodied Robot Inspired by True Slime Mold. Biological Cybernetics (2010), doi:10.1007/s00422-010-0367-9Google Scholar
  11. 11.
    Poppele, R.E., Bosco, G., Rankin, A.M.: Independent Representations of Limb Axis Length and Orientation in Spinocerebellar Response Components. J. Neurophysiol. 87, 409–422 (2002)Google Scholar
  12. 12.
    Sato, T., Kano, T., Ishiguro, A.: On the Applicability of the Decentralized Control Mechanism Extracted from the True Slime Mold: A Robotic Case Study with a Serpentine Robot. Bioinspiration and Biomimetics 6 (2010), doi:10.1088/1748-3182Google Scholar
  13. 13.
    Kano, T., Nagasawa, K., Owaki, D., Tero, A., Ishiguro, A.: A CPG-based Decentralized Control of a Quadruped Robot Inspired by True Slime Mold. In: Proc. of IROS 2010, pp. 4928–4933 (2010)Google Scholar
  14. 14.
    Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press (2006)Google Scholar
  15. 15.
    Alexander, R.M.: Walking and Running. American Scientist 72, 348–354 (1984)Google Scholar
  16. 16.
    Keller, T.S., Weisberger, A.M., Ray, J.L., Hasan, S.S., Shiavi, R.G., Spengler, D.M.: Relationship between Vertical Ground Reaction Force and Speed during Walking, Slow Jogging, and Running. Clinical Biomechanics 11, 253–259 (1996)CrossRefGoogle Scholar
  17. 17.
    Pandy, M.G.: Simple and Complex Models for Studying Muscle Function in Walking. Philosophical Transactions of the Royal Society of London Series B 358, 1501–1509 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dai Owaki
    • 1
  • Takeshi Kano
    • 1
  • Atsushi Tero
    • 2
  • Masakazu Akiyama
    • 2
  • Akio Ishiguro
    • 1
    • 3
  1. 1.Research Institute of Electrical CommunicationTohoku UniversitySendaiJapan
  2. 2.Institute of Mathematics for IndustryKyushu UniversityFukuokaJapan
  3. 3.CREST (Core Research for Evolutional Science)Japan Science and Technology AgencyTokyoJapan

Personalised recommendations