Perceptual Social Dimensions of Human - Humanoid Robot Interaction

  • Hiroshi Ishiguro
  • Shuichi Nishio
  • Antonio Chella
  • Rosario Sorbello
  • Giuseppe Balistreri
  • Marcello Giardina
  • Carmelo Calí
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)


The present paper aims at a descriptive analysis of the main perceptual and social features of natural conditions of agent interaction, which can be specified by agent in human-humanoid robot interaction. A principled approach to human-robot interaction may be assumed to comply with the natural conditions of agents overt perceptual and social behaviour. To validate our research we used the minimalistic humanoid robot Telenoid. We have conducted human-robot interactions test with people with no prior interaction experience with robot. By administrating our questionnaire to subject after well defined experimental conditions, an analysis of significant variance correlation among dimensions in ordinary and goal guided contexts of interaction has been performed in order to prove that perception and believability are indicators of social interaction and increase the degree of interaction in human-humanoid interaction. The experimental results showed that Telenoid is seen from the users as an autonomous agent on its own rather than a teleoperated artificial agent and as a believable agent for its naturally acting in response to human agent actions.


Humanoid Robot Robot Interaction Overt Behaviour Face Recognition System Human Robot Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poel, M., Heylen, D., Nijholt, A., Meulemans, M., Van Breemen, A.: Gaze behaviour, believability, likability and the icat. AI Society 24(1), 61–73 (2009)CrossRefGoogle Scholar
  2. 2.
    Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., Von Hofsten, C., Rosander, K., Lopes, M., Santos-Victor, J., et al.: The icub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks 23(8-9) (2010)Google Scholar
  3. 3.
    Kanda, T., Hirano, T., Eaton, D., Ishiguro, H.: Interactive robots as social partners and peer tutors for children: A field trial. Human-Computer Interaction 19(1), 61–84 (2004)CrossRefGoogle Scholar
  4. 4.
    Minato, T., Shimada, M., Ishiguro, H., Itakura, S.: Development of an android robot for studying human-robot interaction. Innovations in Applied Artificial Intelligence, 424–434 (2004)Google Scholar
  5. 5.
    Shimada, M., Minato, T., Itakura, S., Ishiguro, H.: Evaluation of android using unconscious recognition. In: 6th IEEE-RAS International Conference on Humanoid Robots 2006, pp. 157–162. IEEE (2006)Google Scholar
  6. 6.
    Ishiguro, H.: Android science toward a new cross-interdisciplinary framework. Robotics Research 28, 118–127 (2007)CrossRefGoogle Scholar
  7. 7.
    Argyle, M., Ingham, R., Alkema, F., McCallin, M.: The different functions of gaze. Semiotica 7(1), 19–32 (1973)CrossRefGoogle Scholar
  8. 8.
    Argyle, M., Cook, M.: Gaze and mutual gaze (1976)Google Scholar
  9. 9.
    Argyle, M., Dean, J.: Eye-contact, distance and affiliation. Sociometry, 289–304 (1965)Google Scholar
  10. 10.
    Torres, O., Cassell, J., Prevost, S.: Modeling gaze behavior as a function of discourse structure. In: First International Workshop on Human-Computer Conversation, Citeseer (1997)Google Scholar
  11. 11.
    Thrisson, K.: Gandalf: an embodied humanoid capable of real-time multimodal dialogue with people. In: First ACM International Conference on Autonomous Agents, pp. 5–8 (1997)Google Scholar
  12. 12.
    Vertegaal, R., Slagter, R., van der Veer, G., Nijholt, A.: Eye gaze patterns in conversations: there is more to conversational agents than meets the eyes. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 301–308. ACM (2001)Google Scholar
  13. 13.
    Mutlu, B., Forlizzi, J., Hodgins, J.: A storytelling robot: Modeling and evaluation of human-like gaze behavior. In: 6th IEEE-RAS International Conference on Humanoid Robots 2006, pp. 518–523. IEEE (2006)Google Scholar
  14. 14.
    Jackson, P., Decety, J.: Motor cognition: a new paradigm to study self-other interactions. Current Opinion in Neurobiology (2004)Google Scholar
  15. 15.
    Pietroni, D., Van Kleef, G., De Dreu, C., Pagliaro, S.: Emotions as strategic information: Effects of other’s emotional expressions on fixed-pie perception, demands, and integrative behavior in negotiation. Journal of Experimental Social Psychology (2008)Google Scholar
  16. 16.
    Anderson, S., Bechara, A., Damasio, H., Tranel, D., Damasio, A.; Adolphs, R.: Social cognition and the human brain. Trends in Cognitive Science 3, 469–479 (1999); Allen, C.: Behavioral and Brain Sciences (2004) (1991) Google Scholar
  17. 17.
    Adolphs, R.: Neural systems for recognizing emotion. Current Opinion in Neurobiology 12(2), 169–177 (2002)CrossRefGoogle Scholar
  18. 18.
    Phan, K., Wager, T., Taylor, S., Liberzon, I.: Functionalneuroanatomy of emotion: a meta-analysis of emotion activation studies in pet and fmri. Neuroimage 16(2), 331–348 (2002)CrossRefGoogle Scholar
  19. 19.
    Phillips, M., Drevets, W., Rauch, S., Lane, R.: Neurobiology of emotion perception: The neural basis of normal emotion perception. Biological Psychiatry 54(5), 504–514 (2003)CrossRefGoogle Scholar
  20. 20.
    Koffka, K.: Principles of Gestalt psychology, New York (1955)Google Scholar
  21. 21.
    Kohler, W.: Gestalt psychology: An introduction to new concepts in modern psychology. Liveright Publishing Corporation (1992)Google Scholar
  22. 22.
    Heider, F.: The psychology of interpersonal relations. Lawrence Erlbaum (1982)Google Scholar
  23. 23.
    Lewin, K., Heider, F., Heider, G.: Principles of topological psychology (1936)Google Scholar
  24. 24.
    Chrisley, R.: Synthetic phenomenology. International Journal of Machine Consciousness 1(1), 53–70 (2009)CrossRefGoogle Scholar
  25. 25.
    Gallese, V.: Embodied simulation: From neurons to phenomenal experience. Phenomenology and the Cognitive Sciences (2005)Google Scholar
  26. 26.
    Dautenhahn, K.: The art of designing socially intelligent agents: Science, fiction, and the human in the loop. Applied Artificial Intelligence 12, 7(8), 573–617 (1998)Google Scholar
  27. 27.
    Cronbach, L.: Coefficient alpha and the internal structure of tests. Psychometrika 16(3), 297–334 (1951)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hiroshi Ishiguro
    • 1
    • 2
  • Shuichi Nishio
    • 2
  • Antonio Chella
    • 3
  • Rosario Sorbello
    • 3
  • Giuseppe Balistreri
    • 3
  • Marcello Giardina
    • 3
  • Carmelo Calí
    • 4
  1. 1.Graduate School of Engineering ScienceOsaka UniversityOsakaJapan
  2. 2.ATR Intelligent Robotics and Communication LaboratoryKyotoJapan
  3. 3.DICGIM, RoboticsLabUniversitá di PalermoPalermoItaly
  4. 4.Dipartimento FIERI-AGLAIAUniversitá di PalermoPalermoItaly

Personalised recommendations