Integrated Balance Control on Uneven Terrain

  • Feng Xue
  • Xiaoping Chen
  • Jinsu Liu
  • Daniele Nardi
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)

Abstract

To reach competent Human-Robot Interaction, robots should be able to behave stably on uneven terrain in domestic environments. This paper addresses a technique, which integrates four balance control strategies and is used on Nao robot to realize walking on uneven terrain that is not modelled in advance. The most important two strategies are “Closed Loop Gait Pattern Generator” and “Posture Control”. The former one uses the filtered robot state based on Kalman filter. It helps to improve joint tracking, which is important for model based approaches. The latter one helps to make the trunk vertical to the ground. This strategy is very effective when walking on a slope. The other two strategies are “CoG (Center of Gravity) Height Control” and “Ankle Joint Control”, which are used to resist relatively large tilt and prevent potential falling over motion. abstract environment.

Keywords

Biped Walking Balance Control Uneven Terrain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of nao humanoid. In: IEEE International Conference on Robotics and Automation (2009)Google Scholar
  2. 2.
    Xue, F., Chen, X., Liu, J., Nardi, D.: Real Time Biped Walking Gait Pattern Generator for a Real Robot. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 210–221. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Diedam, H., Dimitrov, D., Wieber, P.-B., Mombaur, K., Diehl, M.: Online walking gait generation with adaptive foot positioning through linear model predictive control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)Google Scholar
  4. 4.
    Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: A step toward humanoid push recovery. In: Proceedings of IEEE International Conference on Humanoids (2006)Google Scholar
  5. 5.
    Liu, J., Xue, F., Chen, X.: A universal biped walking generator for complex environments with pattern feasibility checking. International Journal of Humanoid Robotics 08(2), 323 (2011)CrossRefGoogle Scholar
  6. 6.
    Liu, J., Manuela, V.: Online zmp sampling search for biped walking planning. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2008)Google Scholar
  7. 7.
    Nishiwaki, K., Kagami, S.: Walking control on uneven terrain with short cycle pattern generation. In: Proceedings of IEEE International Conference on Humanoids (2007)Google Scholar
  8. 8.
    Tajima, R., Honda, D., Suga, K.: Fast running experiments involving a humanoid robot. In: IEEE International Conference on Robotics and Automation (2009)Google Scholar
  9. 9.
    Kajita, S., Kanehiro, F., Kanako, K., Yokoi, K., Hirukawa, H.: The 3D Linear Inverted Pendulum Model: A simple modeling for a biped walking pattern generation. In: IEEE/RSJ Int. Conf. on Intelligent Robots and System, IROS 2001, Hawaii, USA (2001)Google Scholar
  10. 10.
    Takenaka, T., Matsumoto, T., Yoshiike, T., Hasegawa, T., Shirokura, S., Kaneko, H., Orita, A.: Real time motion generation and control for biped robot - 4th report: Integrated balance control. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)Google Scholar
  11. 11.
    Wieber, P.B.: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: Proceedings of IEEE International Conference on Humanoids (2006)Google Scholar
  12. 12.
    Sugahara, Y., Mikuriya, Y., Hashimoto, K., Hosobata, T., Sunazuka, H., Kawase, M., Lim, H.-O., Takanishi, A.: Walking control method of biped locomotors on inclined plane. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Feng Xue
    • 1
  • Xiaoping Chen
    • 1
  • Jinsu Liu
    • 1
  • Daniele Nardi
    • 2
  1. 1.Department of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Compute and System ScienceSapienza University of RomaRomaItaly

Personalised recommendations