Role of Holographic Displays and Stereovision Displays in Patient Safety and Robotic Surgery

  • Ali Sengül
  • Attila Barsi
  • David Ribeiro
  • Hannes Bleuler
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)


In this study, the role of different 3D vision systems on the patient safety in the context of robotic surgery was studied. Clearly safety is the foremost importance in all surgical procedures. It is well studied in the clinical surgical procedures but the role of different 3D vision system in the context of patient safety is hardly ever mentioned. The assessment of the quality of the 3D images and role of force feedback was studied with two distinct methods (spatial estimation and depth perception) in two different vision systems (holographic and stereovision). The main idea in this study is to investigate quantitatively the role of the vision system in patient safety.


Safety in surgical robotics 3D Display Depth Perception Stereovision Holographic Displays Force Feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cuschieri, A.: Minimal access surgery and the future of interventional laparoscopy. Am. J. Surg. 161, 404–407 (1991)CrossRefGoogle Scholar
  2. 2.
    Da Vinci Surgery, Intuitive Surgical (2012),
  3. 3.
    Vasilyev, V., Novotny, M., Martinez, F., Loyola, H., Salgo, I., Howe, R., Nido, J.: Stereoscopic vision display technology in real-time three-dimensional echocardiography-guided intracardiac beating-heart surgery. J. Thorac. Cardiovasc. Surg. 135, 1334–1341 (2008)CrossRefGoogle Scholar
  4. 4.
    Taffinder, N., Smith, S., Huber, J., Russell, R., Darzi, A.: The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons. Surg. Endosc. 13, 1087–1092 (1999)CrossRefGoogle Scholar
  5. 5.
    Mueller-Richter, U., Limberger, A., Weber, P., Ruprecht, K., Spitzer, W., Schilling, M.: Possibilities and limitations of current stereo-endoscopy. Surg. Endosc. 18, 942–947 (2004)CrossRefGoogle Scholar
  6. 6.
    Hofmeister, J., Frank, T., Cuschieri, A., Wade, N.: Perceptual aspects of two-dimensional and stereoscopic display techniques in endoscopic surgery: review and current problems. Semin. Laparosc. Surg. 8, 12–24 (2001)CrossRefGoogle Scholar
  7. 7.
    Peitgen, K., Walz, M., Holtmann, G., Eigler, F.: A prospective randomized experimental evaluation of three-dimensional imaging in laparoscopy. Gastrointest Endosc. 44, 262–267 (1996)CrossRefGoogle Scholar
  8. 8.
    Bergen, P., Kunert, W., Bessell, J., Buess, G.: Comparative study of two-dimensional and three-dimensional vision systems for minimally invasive surgery. Surg. Endosc. 12, 948–954 (1998)CrossRefGoogle Scholar
  9. 9.
    Suematsu, Y., Martinez, J., Wolf, B., Marx, G., Stoll, J., DuPont, P.: Three-dimensional echo-guided beating heart surgery without cardiopulmonary bypass: atrial septal defect closure in a swine model. J. Thorac. Cardiovasc. Surg. 130, 1348–1357 (2005)CrossRefGoogle Scholar
  10. 10.
    Watt, S., Akeley, K., Ernst, M., Banks, S.: Focus cues affect perceived depth. Journal of Vision, 834–862 (2005)Google Scholar
  11. 11.
    Naceri, A., Chellali, R., Dionne, F., Toma, S.: Depth Perception Within Virtual Environments: Comparison Between two Display Technologies. International Journ. on Advances in Intelligent Systems 3(1&2) (2010)Google Scholar
  12. 12.
    Dv Trainer. Mimics (2012),
  13. 13.
    Holovizio, Holografika (2012),
  14. 14.
    Beck, L., Wolter, M., Mungard, N., Vohn, R., Staedtgen, M., Kuhlen, T., Sturm, W.: Evaluation of Spatial Processing in Virtual Reality Using Functional Magnetic Resonance Imaging (fMRI). Cyberpsychology Behavior and Social Networking 13 (2010)Google Scholar
  15. 15.
    Hoffman, D., Girshick, A., Akeley, K.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 1–30 (2008)CrossRefGoogle Scholar
  16. 16.
    Swan, J., Jones, A., Kolstad, E., Livingston, M., Smallman, H.: Egocentric depth judgments in optical, see through augmented reality. IEEE Trans. Vis. Comput. Graph 13(3), 429–442 (2007)CrossRefGoogle Scholar
  17. 17.
    Loomis, J.M., Da Silva, J.A., Philbeck, J.W., Fukusima, S.S.: Visual perception of location and distance. Current Directions in Psychological Science 5, 72–77 (1996)CrossRefGoogle Scholar
  18. 18.
    Loomis, J.M., Knapp, J.M.: Visual perception of egocentric distance in real and virtual environments. In: Hettinger, L.J., Haas, M.W. (eds.) Virtual and Adaptive Environments, pp. 21–46 (2003)Google Scholar
  19. 19.
    Aznar-Casanova, J.A., Matsushima, E.H., Silva, J.A.D., Ribeiro-Filho, N.P.: Can exocentric direction be dissociated from its exocentric distance in virtual environments? Percept Psychophys. 70(3), 541–550 (2008)CrossRefGoogle Scholar
  20. 20.
    Gruber, H.E.: The relation of perceived size to perceived distance. The American Journal of Psychology 67, 411–426 (1954)CrossRefGoogle Scholar
  21. 21.
    Berryhill, M.E., Fendrich, R., Olson, I.R.: Impaired distance perception and size constancy following bilateral occipitoparietal damage. Exp. Brain Res. 194(3), 381–393 (2009)CrossRefGoogle Scholar
  22. 22.
    Armbruster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth Perception in Virtual Reality: Distance Estimantions in Peri- and Extrapersonal Space. Cyber Psychology & Behavior 11 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ali Sengül
    • 1
  • Attila Barsi
    • 2
  • David Ribeiro
    • 1
  • Hannes Bleuler
    • 1
  1. 1.Robotic Systems LaboratoryEPFL Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Holografika Ltd.BudapestHungary

Personalised recommendations