Classification of Modeling for Versatile Simulation Goals in Robotic Surgery

  • Stefan Jörg
  • Rainer Konietschke
  • Julian Klodmann
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)


Simulation is common practice for surgeon training in particular for robotic surgery. This paper introduces further relevant applications of simulation that improve patient safety. Therefore, the design of a modular simulator for minimally invasive robotic surgery is presented. The authors introduce a classification of hierarchical levels of modeling details for the three aspects Application, System, and Patient. Furthermore, the principal use case classes Training, Workflow Validation, Workflow Design, Monitoring, and Robot Design of simulation for robotic surgery are introduced. For each class standard simulator setups are presented. The use of the classification is exemplified for Training and Robot Design use cases.


surgical robotics simulation patient safety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    da Vinci skills simulator, (last visited January 30, 2012)
  2. 2.
    Agency for Healthcare Research and Quality: Improving patient saftey through simulation research (2008),
  3. 3.
    Alimisis, D., Vicentini, M., Fiorini, P.: Towards a problem-based training curriculum for surgical robotics: the SAFROS project. In: Bastiaens, T., Ebner, M. (eds.) Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, Chesapeake, VA, pp. 297–302 (2011)Google Scholar
  4. 4.
    Banks, J. (ed.): Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice. Wiley & Sons, New York (1998)Google Scholar
  5. 5.
    Basdogan, C., Sedef, M., Harders, M., Wesarg, S.: VR-based simulators for training in minimally invasive surgery. Computer Graphics and Applications 27(2), 54–66 (2007), doi:10.1109/MCG.2007.51CrossRefGoogle Scholar
  6. 6.
    Herron, D., Marohn, M.: A consensus document on robotic surgery. Surgical Endoscopy 22, 313–325 (2008), doi:10.1007/s00464-007-9727-5CrossRefGoogle Scholar
  7. 7.
    Hirzinger, G., Brunner, B., Dietrich., J., Heindl, J.: Sensor-based space robotics-ROTEX and its telerobotic features. IEEE Transactions on Robotics and automation 9(5) (1993)Google Scholar
  8. 8.
    Klodmann, J., Konietschke, R., Albu-Schaffer, A., Hirzinger, G.: Static calibration of the DLR medical robot MIRO, a flexible lightweight robot with integrated torque sensors. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3708–3715. IEEE, San Francisco (2011), doi:10.1109/IROS.2011.6095097CrossRefGoogle Scholar
  9. 9.
    Lerner, M., Ayalew, M., Peine, W., Sundaram, C.: Does training on a virtual reality robotic simulator improve performance on the da vinci surgical system? Journal of Endourology 24(3) (2010)Google Scholar
  10. 10.
    Object Managment Group, OMG Systems Modeling Language (OMG SysML), Version 1.2, Document formal/2010-06-01 (2006),
  11. 11.
    Satava, R.: Historical review of surgical simulation - a personal perspective. World Journal of Surgery 32(2), 141–148 (2008), doi:10.1007/s00268-007-9374-yCrossRefGoogle Scholar
  12. 12.
    Sokolowski, J., Banks, C. (eds.): Principles of Modeling and Simulation: A Multidisciplinary Approach. Wiley & Sons, New York (2009)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Jörg
    • 1
  • Rainer Konietschke
    • 1
  • Julian Klodmann
    • 1
  1. 1.Robotics and Mechatronics CenterGerman Aerospace Center (DLR)WesslingGermany

Personalised recommendations