Observation Planning for Object Search by a Mobile Robot with Uncertain Recognition

  • Matthieu Boussard
  • Jun Miura
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 194)


In order to handle complex tasks in an unknown environment, a robot has to build a map with both free space information and objects type and location. We present an active vision system which first detects candidate objects using global detection mechanism, and later identifies them by moving the robot closer and by using a local recognition mechanism. Having multiple candidates and uncertain algorithm outcomes, we cast the problem as a Markov Decision Process. We exhibit the modelization process, the capability of online solver to quickly find a good action, and finally the implementation on a real robot. This implementation consists of a set of Robot Technology Components (RT components) implementing each part of our method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ando, N., Suehiro, T., Kotoku, T.: A Software Platform for Component Based RT-System Development: OpenRTM-Aist. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 87–98. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Aydemir, A., Sjöö, K., Folkesson, J., Pronobis, A., Jensfelt, P.: Search in the real world: Active visual object search based on spatial relations. In: ICRA 2011. IEEE, Shanghai (2011)Google Scholar
  3. 3.
    Bonet, B., Geffner, H.: Labeled RTDP: Improving the convergence of real-time dynamic programming. In: Giunchiglia, E., Muscettola, N., Nau, D.S. (eds.) ICAPS, pp. 12–31. AAAI (2003)Google Scholar
  4. 4.
    Boussard, M., Miura, J.: Observation planning with on-line algorithms and GPU heuristic computation. In: ICAPS 2010 Workshop on Planning and Scheduling Under Uncertainty (2010)Google Scholar
  5. 5.
    Helmer, S., Lowe, D.G.: Using stereo for object recognition. In: ICRA 2010, pp. 3121–3127. IEEE (2010)Google Scholar
  6. 6.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Masuzawa, H., Miura, J.: Observation planning for environment information summarization with deadlines. In: IROS 2010, Taipei, Taiwan, pp. 30–36 (2010)Google Scholar
  8. 8.
    Meger, D., Muja, M., Helmer, S., Gupta, A., Gamroth, C., Hoffman, T., Baumann, M., Southey, T., Fazli, P., Wohlkinger, W., Viswanathan, P., Little, J.J., Lowe, D.G., Orwell, J.: Curious george: An integrated visual search platform. In: CRV, pp. 107–114. IEEE Computer Society, Washington, DC (2010)Google Scholar
  9. 9.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley (2005)Google Scholar
  10. 10.
    Shubina, K., Tsotsos, J.K.: Visual search for an object in a 3D environment using a mobile robot. Comput. Vis. Image Underst. 114, 535–547 (2010)CrossRefGoogle Scholar
  11. 11.
    Sjöö, K., Gálvez-López, D., Paul, C., Jensfelt, P., Kragic, D.: Object search and localization for an indoor mobile robot. Journal of Computing and Information Technology, Special Issue on Advanced Mobile Robotics 17(1) (2009)Google Scholar
  12. 12.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT Press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthieu Boussard
    • 1
  • Jun Miura
    • 1
  1. 1.Active Intelligent Systems Laboratory, Department of Computer Science and EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations