Advertisement

Basic Concepts of Probability Theory

  • Szymon Borak
  • Wolfgang Karl Härdle
  • Brenda López-Cabrera
Chapter
Part of the Universitext book series (UTX)

Abstract

This part is an introduction to standard concepts of probability theory. We discuss a variety of exercises on moment and dependence calculations with a real marketing example. We also study the characteristics of transformed random vectors, e.g. distributions and various statistical measures. Another feature that needs to be considered is various conditional statistical measures and their relations with corresponding marginal and joint distributions. Two more exercises are given in order to distinguish the differences between numerical statistic measures and statistical properties.

Keywords

Random Vector Joint Distribution Gamma Function Asymptotic Distribution Nonlinear Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Breiman, L. (1973). Statistics: With a view towards application. Boston: Houghton Mifflin Company.Google Scholar
  2. Cizek, P., Härdle, W., & Weron, R. (2011). Statistical tools in finance and insurance (2nd ed.). Berlin/Heidelberg: Springer.Google Scholar
  3. Feller, W. (1966). An introduction to probability theory and its application (Vol. 2). New York: Wiley.Google Scholar
  4. Franke, J., Härdle, W., & Hafner, C. (2011). Statistics of financial markets (3rd ed.). Berlin/ Heidelberg: Springer.Google Scholar
  5. Härdle, W., & Simar, L. (2012). Applied multivariate statistical analysis (3rd ed.). Berlin: Springer.Google Scholar
  6. Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Nonparametric and semiparametric models. Berlin: Springer.Google Scholar
  7. Harville, D. A. (2001). Matrix algebra: Exercises and solutions. New York: Springer.Google Scholar
  8. Klein, L. R. (1974). A textbook of econometrics (2nd ed., 488 p.). Englewood Cliffs: Prentice Hall.Google Scholar
  9. MacKinnon, J. G. (1991). Critical values for cointegration tests. In R. F. Engle & C. W. J. Granger (Eds.), Long-run economic relationships readings in cointegration (pp. 266–277). New York: Oxford University Press.Google Scholar
  10. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Duluth/London: Academic.Google Scholar
  11. RiskMetrics. (1996). J.P. Morgan/Reuters (4th ed.). RiskMetricsTM.Google Scholar
  12. Serfling, R. J. (2002). Approximation theorems of mathematical statistics. New York: Wiley.Google Scholar
  13. Tsay, R. S. (2002). Analysis of financial time series. New York: Wiley.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Szymon Borak
    • 1
  • Wolfgang Karl Härdle
    • 1
  • Brenda López-Cabrera
    • 1
  1. 1.Humboldt-Universität zu Berlin Ladislaus von Bortkiewicz Chair of StatisticsC.A.S.E. Centre for Applied Statistics and Economics School of Business and EconomicsBerlinGermany

Personalised recommendations