Skip to main content

Effect of Passive Body Deformation of Hawkmoth on Flight Stability

  • Chapter
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

  • 4147 Accesses

Abstract

In this study, the effect of passive body deformation on flight stability during insect flapping flight is investigated numerically. We developed a flexible body dynamic solver for a three-dimensional flexible beam model and coupled it with an in-house fluid dynamics solver. With this integrated model, hawkmoth free flights are simulated and analyzed systematically with six cases, in which the joint stiffness between thorax and abdomen varied from extremely rigid to very flexible. Our results indicate that the passive body deformation works likely altering the aerodynamic torque, the body attitude and the flight trajectory. We further found that the most stable flight can be achieved by a moderate joint stiffness, in which the body attitude remains approximately around the initial angle of 40 degree. This points to the importance that the flexible body and its passive deformation during flapping-wing flight are capable to enhance stable flight and flight control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Combes, S.A., Daniel, T.L.: Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol. 206, 2999–3006 (2003)

    Article  Google Scholar 

  2. Zhao, L., Deng, X., Sane, S.P.: Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Bioinsp. Biomim. 6, 36007 (2011)

    Article  Google Scholar 

  3. Nakata, T., Liu, H.: Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B 279, 722–731 (2011)

    Article  Google Scholar 

  4. Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.-K., Cesnik, C.E.S., Liu, H.: Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerospace Sci. 46, 284–327 (2010)

    Article  Google Scholar 

  5. Nakata, T., Liu, H., Tanaka, Y., Nishihashi, N., Wang, X., Sato, A.: Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir. Biomim. 6, 045002 (2011)

    Article  Google Scholar 

  6. Mahardika, N., Viet, N.Q., Park, H.C.: Effect of outer wing separation on lift and thrust generation in a flapping wing. Bioinsp. Biomim. 6, 036006 (2011)

    Article  Google Scholar 

  7. Tanaka, H., Shimoyama, I.: Forward flight of swallowtail butterfly with simple flapping motion. Bioinsp. Biomim. 5, 026003 (2010)

    Article  Google Scholar 

  8. Hinterwirth, A.J., Daniel, T.L.: Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli. J. Comp. Physiol. A 196, 947–956 (2010)

    Article  Google Scholar 

  9. Nakata, T.: Simulation-based study on aerodynamic performance of flexible flapping wings. Chiba University PhD thesis (2012)

    Google Scholar 

  10. Aono, H., Shyy, W., Liu, H.: Near wake vortex dynamics of a hovering hawkmoth. Acta. Mech. Sin. 25, 23–36 (2009)

    Article  Google Scholar 

  11. Liu, H.: Integrated modeling of insect flight: From morphology, kinematics to aerodynamics. J. Comput. Phys. 228, 439–459 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, S.L., Chui, P.P.T.: Non-Linear Static Analysis of steel Frames with Semi-Rigid Connections. Elsevier Science Ltd, London (2000)

    Google Scholar 

  13. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions - A geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Piperno, S., Farhat, C.: Partitioned procedures for the transient solution of coupled aeroelastic problems - part ii: energy transfer analysis and three-dimensional applications. Comput. Methods Appl. Mech. Eng. 190, 3147–3170 (2001)

    Article  MATH  Google Scholar 

  15. Hedrick, T.L., Daniel, T.L.: Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering. J. Exp. Biol. 209, 3110–3114 (2006)

    Article  Google Scholar 

  16. Wu, J.H., Zhang, Y.L., Sun, M.: Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations. J. Exp. Biol. 212, 3313–3329 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noda, R., Maeda, M., Liu, H. (2013). Effect of Passive Body Deformation of Hawkmoth on Flight Stability. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics