Indoor Flight Testing and Controller Design of Bioinspired Ornithopter

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 193)

Abstract

Indoor flight testing of a bioinspired ornithopter is conducted in this study and the dominant flight state variables such as body pitch angle, forward flight speed, altitude, wings and tail motions of the freely flying ornithopter are simultaneously measured by using a three-dimensional visual tracking system. A control-oriented system model of the ornithopter in trimmed level flight is established based on the recorded inputs and outputs dataset and the system matrices are fitted in a least-squares sense. To reduce the amplitude of the ornithopter body oscillations, the identified linear time-invariant system model is formulated to a disturbance-rejection problem and an optimal controller minimizing the quadratic performance index is designed. The continuous wing motion defined as the known disturbance deteriorates the pitch balance with respect to the center of gravity; however, the designed feedforward and feedback controller periodically activates the ornithopter tail and successfully reduces the magnitudes of the body oscillations.

Keywords

flapping-wing flight ornithopter feedback and feedforward control visual tracking system indoor flight testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hylton, T., Martin, C., Tun, R., Castelli, V.: The DARPA Nano Air Vehicle Program. In: Proc. of 50th AIAA Aerospace Science Meeting, Nashville, TN, January 06-12, AIAA 2012-0583 (2012)Google Scholar
  2. 2.
    Keennon, M., Klingebiel, K., Won, H., Audriukov, A.: Development of the Nano Hummingbird: A Tailless flapping wing micro air vehicle. In: Proc. of 50th AIAA Aerospace Science Meeting, Nashville, TN, January 06-12, AIAA 2012-0588 (2012)Google Scholar
  3. 3.
    Festo, A.G., Co, K.G.: Brochure of SmartBird (April 2011), http://www.festo.com/
  4. 4.
    Han, J.-H., Lee, J.-S., Kim, D.-K.: Bio-inspired flapping UAV design: A university perspective. In: Proc. SPIE, vol. 7295, pp. 7295I1–7295I12 (2009)Google Scholar
  5. 5.
    Park, J.H., Yoon, K.-J.: Designing a biomimetic ornithopter capable of sustained and controlled flight. J. Bionic Eng. 7(1), 39–47 (2008)CrossRefGoogle Scholar
  6. 6.
    Pfeiffer, A.T., Lee, J.-S., Han, J.-H., Baier, H.: Ornithopter flight simulation based on flexible multi-body dynamics. J. Bionic Eng. 7(1), 102–111 (2010)CrossRefGoogle Scholar
  7. 7.
    Lee, J.-S., Han, J.-H.: Experimental study on flight dynamics of bioinspired ornithopter: Free flight testing and wind tunnel testing. Smart Materials and Structures (accepted for publication, April 2012)Google Scholar
  8. 8.
    Lee, J.-S., Kim, J.-K., Kim, D.-K., Han, J.-H.: Longitudinal flight dynamics of bioinspired ornithopter considering fluid-structure interaction. J. Guid. Control. Dynam. 34(3), 667–677 (2011)CrossRefGoogle Scholar
  9. 9.
    Grauer, J., Hubbard Jr., J.: Inertial measurements from flight data of a flapping-wing ornithopter. J. Guid. Control. Dynam. 32(1), 326–331 (2009)CrossRefGoogle Scholar
  10. 10.
    Kim, J.-K., Lee, J.-S., Han, J.-H.: Passive longitudinal stability of ornithopter flight. J. Guid. Control. Dynam. 35(2), 669–673 (2012)CrossRefGoogle Scholar
  11. 11.
    Cheng, B., Deng, X.: Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE T. Robot. 27(5), 849–864 (2011)CrossRefGoogle Scholar
  12. 12.
    How, J., Bethke, B., Frank, A., Dale, D., Vian, J.: Real-time indoor autonomous vehicle test environment. IEEE Contr. Syst. Mag. 28(2), 51–64 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Maniar, G., Randall, R., Shkarayev, S.: Kinematics of Free-flight Ornithopters. In: Proc. of 50th AIAA Aerospace Science Meeting, Nashville, TN, January 06-12, AIAA 2012-0666 (2012)Google Scholar
  14. 14.
    Kim, J.-K., Lee, J.-S., Han, J.-H.: Limit-cycle oscillation suppression of ornithopter longitudinal flight dynamics. In: Proc. of AIAA GNC Conference, Portland, OR, August 08-11, AIAA 2011-6404 (2011)Google Scholar
  15. 15.
    Lee, J.-S., Kim, J.-K., Han, J.-H., Ellington, C.P.: Periodic tail motion linked to wing motion affects the longitudinal stability of ornithopter flight. J. Bionic. Eng. 9(1), 18–28 (2012)CrossRefGoogle Scholar
  16. 16.
    Grauer, J., Hubbard Jr., J.: Modeling of ornithopter flight dynamics for state estimation and control. In: Proc. of America Control Conf., Baltimore, MD, June 30-July 02 (2010)Google Scholar
  17. 17.
    Dietl, J., Garcia, E.: Ornithopter control with periodic infinite horizon controllers. J. Guid. Control. Dynam. 34(5), 1412–1421 (2011)CrossRefGoogle Scholar
  18. 18.
    Krashanitsa, R., Silin, D., Shakarayev, S., Abate, G.: Flight dynamics of a flapping-wing air vehicle. Int. J. MAV. 1(1), 35–49 (2009)Google Scholar
  19. 19.
    Dorato, P., Abdallah, C.T., Cerone, V.: Linear-Quadratic Control: An Introduction, pp. 43–62. Prentice-Hall, Inc. (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dept. of Aerospace EngineeringKAISTDaejeonKorea

Personalised recommendations