Advertisement

Gaze Control-Based Navigation Architecture for Humanoid Robots in a Dynamic Environment

  • Jeong-Ki Yoo
  • Jong-Hwan Kim
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 193)

Abstract

Due to the limited information from the environment using a local vision sensor, gaze control research is very important for humanoid robots. In addition, multiple objectives for navigation have interactive relationships among them. From this point of view, this paper proposes a gaze control-based navigation architecture using fuzzy integral and fuzzy measure for humanoid robots. Four criteria are employed along with their partial evaluation functions in order to determine the final gaze direction. By employing fuzzy integral approach for the global evaluation for candidate gaze directions, effective gaze control considering the interactive phenomena among criteria is accomplished and verified through a simulation using a developed simulator for HanSaRam-IX (HSR-IX).

Keywords

gaze control Choquet fuzzy integral preference-based selection algorithm univector field method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., Kanehiro, F.: Development of humanoid robot HRP-3P. In: Proc. IEEE-RAS Int. Conf. Humanoid Robots, Tsukuba, Japan, pp. 50–55 (December 2005)Google Scholar
  2. 2.
    Yoo, J.-K., Lee, B.-J., Kim, J.-H.: Recent progress and development of the humanoid robot HanSaRam. Robotics and Autonomous Systems 57(10), 973–981 (2009)CrossRefGoogle Scholar
  3. 3.
    Gutmann, J.-S., Fukuchi, M., Fujita, M.: 3D perception and environment map generation for humanoid robot navigation. Int. J. Robot. Res. 27(10), 1117–1134 (2008)CrossRefGoogle Scholar
  4. 4.
    Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schöder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton. Syst. 56(1), 54–65 (2008)CrossRefGoogle Scholar
  5. 5.
    Andreopoulos, A., Hasler, S., Wersing, H., Janssen, H., Tsotsos, J. K., Körner, E.: Active 3D object localization using a humanoid robot. IEEE Trans. Robot. 27(1) (February 2011)Google Scholar
  6. 6.
    Henderson, J.M.: Human gaze control during real-world scene perception. TRENDS in Cognitive Sciences 7(11), 498–504 (2003)CrossRefGoogle Scholar
  7. 7.
    Seara, J.F., Schmidt, G.: Intelligent gaze control for vision-guided humanoid walking: methodological aspects. Robot. Auton. Syst. 48(4), 231–248 (2004)CrossRefGoogle Scholar
  8. 8.
    Lidoris, G., Kuhnlenz, K., Wollherr, D., Buss, M.: Information-based gaze direction planning algorithm for SLAM. In: 2006 6th IEEE-RAS Int. Conf. Humanoid Robots, Genova, Italy, pp. 302–307 (December 2006)Google Scholar
  9. 9.
    Takahagi, E.: A fuzzy measure identification method by diamond pairwise comparisons and φ s transformation. Fuzzy Optim. and Making 7(3), 219–232 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Grabisch, M.: A graphical interpretation of the Choquet integral. IEEE Trans. on Fuzzy Syst. 8(5), 627–631 (2000)CrossRefGoogle Scholar
  11. 11.
    Posner, M.I., et al.: Inhibition of return: neural basis and function. Cogn. Neuropsychol. 2, 211–228 (1985)CrossRefGoogle Scholar
  12. 12.
    Leek, E.C., Reppa, I., Tipper, S.P.: Inhibition of return for objects and locations in static displays. Percept. Psychophys. 65(3), 388–395 (2003)CrossRefGoogle Scholar
  13. 13.
    Thrun, S.: Learning occupany grid maps with forward sensor models. Auton. Robots 15(2), 111–127 (2003)CrossRefGoogle Scholar
  14. 14.
    Bailey, T.: Mobile robot localization and mapping in extensive outdoor environments. Doct. Thesis, Univ. Sydney, Australia (2003)Google Scholar
  15. 15.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Doct. Thesis, Tokyo Institute of Technology (1974)Google Scholar
  16. 16.
    Kim, Y.-J., Kim, J.-H., Kim, D.-S.: Evolutionary programming-based univector field navigation method for fast mobile robots. IEEE Trans. Syst., Man, Cybern. B 31(3), 450–458 (2001)CrossRefGoogle Scholar
  17. 17.
    Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable walking pattern of a humanoid robot by using allowable ZMP variation. IEEE Trans. Robotics 24(4), 917–925 (2008)CrossRefGoogle Scholar
  18. 18.
    Yoo, J.-K., Kim, J.-H.: Navigation framework for humanoid robots integrating gaze control and modified-univector field method to avoid dynamic obstacles. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan, pp. 1683–1689 (October 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electrical EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations