Gait Analysis for a Human with a Robot Walking Helper

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 193)

Abstract

With the growth of elderly population in our society, intelligent walking aids will play an important role in providing functional mobility to humans. In this paper, we propose a model to compute gait of humans walking with a robot helper. This model is aimed at designing a control system for the robot walking helper. The human model includes both the single support phase and impacts. Since a human will be walking along with the robot with its help, geometrical constraints and interaction forces are included. To achieve stable walking, zero moment point (ZMP) is utilized in the analysis and friction constraint is included within the reaction force from the ground. Simulations are performed to obtain optimal gait trajectories, the human applied joint torques, and the supporting forces from the robot walking helper.

Keywords

walking helper human robot gait analysis passive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, H., Spenko, M., Dubowsky, S.: An adaptive shared control system for an intelligent mobility aid for the elderly. Auton. Robots 15(1), 53–66 (2003)CrossRefGoogle Scholar
  2. 2.
    Chuy, O., Hirata, Y., Wang, Z., Kosuge, K.: A control approach based on passive behavior to enhance user interaction. IEEE Trans. Robotics 23(5), 899–908 (2007)CrossRefGoogle Scholar
  3. 3.
    Rentschler, A.J., Cooper, R.A., Blaschm, B., Boninger, M.L.: Intelligent walkers for the elderly: Performance and safety testing of VA-PAMAID robotic walker. J. Rehab. Res. Dev. 40(5), 423–432 (2003)CrossRefGoogle Scholar
  4. 4.
    Wasson, G., Sheth, P., Alwan, M., Granata, K., Ledoux, A., Huang, C.: User intent in a shared control framework for pedestrian mobility aids. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2962–2967 (2003)Google Scholar
  5. 5.
    Sabatini, A.M., Genovese, V., Pacchierotti, E.: A mobility aid for the support to walking and object transportation of people with motor impairments. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1349–1354 (2002)Google Scholar
  6. 6.
    Spenko, M., Yu, H., Dubowsky, S.: Robotic personal aids for mobility and monitoring for the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(3), 344–351 (2006)CrossRefGoogle Scholar
  7. 7.
    Hirata, Y., Hara, A., Kosuge, K.: Motion control of passive intelligent walker using servo brakes. IEEE Trans. Robotics 23(5), 981–990 (2007)CrossRefGoogle Scholar
  8. 8.
    Ryu, J.C., Pathak, K., Agrawal, S.K.: Control of a passive mobility assist robot. Journal of Medicial Devices 2, 011002 (7 pages) (2008)Google Scholar
  9. 9.
    Yu, S.H., Ko, C.H., Young, K.Y.: On the design of a robot walking helper with human intension and envoronmental sensing. In: Proc. CACS Int. Auto. Cont. Conf. (2008)Google Scholar
  10. 10.
    Ko, C.H., Agrawal, S.K.: Control and path planning of a walk-assist robot using differential flatness. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6016–6021 (2010)Google Scholar
  11. 11.
    Hirata, Y., Komatsuda, S., Kosuge, K.: Fall prevention control of passive intelligent walker based on human model. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1222–1228 (2008)Google Scholar
  12. 12.
    Hirata, Y., Komatsuda, S., Iwano, T., Kosuge, K.: Motion control of walking assist robot system based on human model. In: International Conference on Biomedical Engineering, pp. 2232–2236 (2008)Google Scholar
  13. 13.
    Nakano, K., Murakami, T.: An approach to guidance motion by gait-training equipment in semipassive walking. IEEE Trans. Industrial Electronics 55(4), 1707–1714 (2008)CrossRefGoogle Scholar
  14. 14.
    Chevallereau, C., Djoudi, D., Grizzle, J.W.: Stable bipedal walking with foot rotation through direct regulation of the zero moment point. IEEE Trans. Robotics 24(2), 390–401 (2008)CrossRefGoogle Scholar
  15. 15.
    Agrawal, A., Agrawal, S.K.: An approach to identify joint motions for dynamically stable walking. Journal of Mechanical Design, Transactions of ASME 128, 649–653 (2006)CrossRefGoogle Scholar
  16. 16.
    Tlalolini, D., Aoustin, Y., Chevallereau, C.: Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst. Dyn. 23(1), 33–56 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19(5), 557–569 (2001)CrossRefGoogle Scholar
  18. 18.
    Wu, T.-Y., Yeh, T.-J.: Optimal design and implementation of an energy-efficient semi-active biped. Robotica 27(6), 841–852 (2009)CrossRefGoogle Scholar
  19. 19.
    Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Tran. on Automatoc Control 46(1), 51–64 (2001)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13(1), 82–92 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chun-Hsu Ko
    • 1
  • Kuu-Young Young
    • 2
  • Sunil K. Agrawal
    • 3
  1. 1.Dept. of Electrical EngineeringI-Shou UniversityKaohsiungTaiwan
  2. 2.Dept. of Electrical EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Dept. of Mechanical EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations