Skip to main content

Visual Gyroscope for Omnidirectional Cameras

  • Chapter

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

Abstract

At present, algorithms for attitude estimation with omnidirectional cameras are predominantly environment-dependent. This constitutes a significant limitation to the applicability of such techniques. This study introduces an approach aimed at general mobile camera attitude estimation. The approach extracts features to directly estimate three-dimensional movements of a humanoid robot from its head-mounted camera. By doing so, it is not subject to the constraints of Structure from Motion with epipolar geometry, which are currently unattainable in real-time. The central idea is: movements between consecutive frames can be reliably estimated from the identity on the unit sphere between external parallel lines and projected great circles. After calibration, parallel lines match optical flow tracks. The point of infinity corresponds to the expansion focus of the movement. Simulations and experiments validate the ability to distinguish between translation, pure rotation, and roto-translation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finotto, M., Menegatti, E.: Humanoid Gait Stabilization based on Omnidirectional Visual Gyroscope. Department of Information Engineering (DEI), Faculty of Engineering. University of Padua, Padova, via Gradenigo 6/a, I-35131 (2009)

    Google Scholar 

  2. Corke, P., Mahony, R.: Sensing and control on the sphere. In: 14th International Symposium on Robotics Research, ISRR 2009 (2009)

    Google Scholar 

  3. Bazin, J.C., Kweon, I., Demonceaux, C., Vasseur, P.: Rectangle Extraction in Catadioptric Images. In: IEEE 11th International Conference on Computer Vision, ICCV 2007 (2007)

    Google Scholar 

  4. Demonceaux, C., Vasseur, P., Pegard, C.: UAV Attitude Computation by Omnidirectional Vision in Urban Environment. In: IEEE International Conference on Robotics and Automation (2007)

    Google Scholar 

  5. Baker, S., Nayar, S.K.: Single Viewpoint Catadioptric Cameras. In: Panoramic Imaging: Sensors, Theory, and Applications (2001)

    Google Scholar 

  6. Baker, S., Nayar, S.K.: A theory of catadioptric image formation. In: Sixth International Conference on Computer Vision (1998)

    Google Scholar 

  7. Barreto, J.P., Araujo, H.: Geometric properties of central catadioptric line images and their application in calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence (2005)

    Google Scholar 

  8. Geyer, C., Daniilidis, K.: Catadioptric Projective Geometry. International Journal of Computer Vision (2001)

    Google Scholar 

  9. Nelson, R.C., Aloimonos, J.: Finding motion parameters from spherical motion fields (or the advantages of having eyes in the back of your head). Biological Cybernetics (1988), doi:10.1007/BF00364131

    Google Scholar 

  10. Shi, J., Tomasi, C.: Good features to track. In: Proceedings CVPR 1994, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1994), doi:10.1109/CVPR.1994.323794

    Google Scholar 

  11. Ly, S., Demonceaux, C., Vasseur, P.: Vasseur, Translation estimation for single viewpoint cameras using lines. In: IEEE International Conference on Robotics and Automation, ICRA (2010), doi:10.1109/ROBOT.2010.5509555

    Google Scholar 

  12. Vasseur, P., Mustapha Mouaddib, E.: Central Catadioptric Line Detection. C.R.E.A. (Centre de Robotique d’Electrotechnique et d’Automatique), University of Picardie Jules Verne (U.P.J.V.), France (1999)

    Google Scholar 

  13. Kim, J., Suga, Y.: An Omnidirectional Vision-Based Moving Obstacle Detection in Mobile Robot. International Journal of Control, Automation, and Systems (2007)

    Google Scholar 

  14. Bouguet, J.-Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm. Intel Corporation Microprocessor Research Labs (2000)

    Google Scholar 

  15. Kent, J.T.: Asymptotic Expansion for the Bingham distribution. Appl. Statist. University of Leeds, UK Online Document (1987)

    Google Scholar 

  16. Robovie-X, V-Stone, http://www.vstone.co.jp/english/products/robovie_x/

  17. Hyperbolic Mirror, V-Stone, http://www.vstone.co.jp/english/products/sensor_camera/

  18. oCamCalib, tutorial e download, http://asl.epfl.ch/scaramuz/research/DavideScaramuzzafiles/Research/OcamCalibTutorial.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Carlon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlon, N., Menegatti, E. (2013). Visual Gyroscope for Omnidirectional Cameras. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics