A Generalized Neural Network Approach to Mobile Robot Navigation and Obstacle Avoidance

  • S. Hamid Dezfoulian
  • Dan Wu
  • Imran Shafiq Ahmad
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 193)

Abstract

Navigation is one of the most important problems in developing and designing intelligent mobile robots. To locally navigate and autonomously plan a path to arrive to a desired destination, Artificial Neural Networks (ANNs) are employed to model complex relationships between inputs and outputs or to find patterns in data as they provide more suitable solutions than the traditional methods. However, current neural network navigation approaches are limited to one kind of robot platform and range sensor, and usually are not extendable to other types of robots with different range sensors without the need to change the network structures. In this paper, we propose a general method to interpret the data from various types of 2-dimensional range sensors and a neural network algorithm to perform the navigation task. Our approach can yield a global navigation algorithm which can be applied to various types of range sensors and robot platforms. Moreover, this method contributes positively to reducing the time required for training the networks.

Keywords

Robot Navigation Obstacle Avoidance Artificial Neural Networks Sensor Visualization Generalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zou, A.-M., Hou, Z.-G., Fu, S.-Y., Tan, M.: Neural Networks for Mobile Robot Navigation: A Survey. Science and Technology, 1218–1226 (2006)Google Scholar
  2. 2.
    Bishop, C.M.: Pattern recognition and machine learning, vol. 4. Springer, New York (2006)MATHGoogle Scholar
  3. 3.
    Mitchell, T.M.: Machine learning. McGraw Hill, Burr Ridge (1997)MATHGoogle Scholar
  4. 4.
    Thrun, S.B.: Exploration and model building in mobile robot domains. In: IEEE International Conference on Neural Networks, pp. 175–180 (1993)Google Scholar
  5. 5.
    Jolliffe, I.: Principal component analysis, pp. 29–62. Springer, New York (2002)MATHGoogle Scholar
  6. 6.
    Vlassis, N., Motomura, Y., Kröse, B.: Supervised dimension reduction of intrinsically low-dimensional data. Neural Computation 14(1), 191–215 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Crowley, J.L., Wallner, F., Schiele, B.: Position estimation using principal components of range data. Robotics and Autonomous Systems 23(4), 267–276 (1998)CrossRefGoogle Scholar
  8. 8.
    Fujii, T., Arai, Y., Asama, H., Endo, I.: Multilayered reinforcement learning for complicated collision avoidance problems. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2186–2191 (1998)Google Scholar
  9. 9.
    Silva, C., Crisostomo, M., Ribeiro, B.: MONODA: a neural modular architecture for obstacle avoidance without knowledge of the environment. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 6, pp. 334–339 (2000)Google Scholar
  10. 10.
    Fausett, L.V.: Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall, Englewood Cliffs (1994)MATHGoogle Scholar
  11. 11.
    Janglová, D.: Neural Networks in Mobile Robot Motion. Advanced Robotic 1(1), 15–22 (2004)Google Scholar
  12. 12.
    Diamantaras, K.I., Kung, S.Y.: Principal component neural networks: theory and applications. John Wiley & Sons, Inc. (1996)Google Scholar
  13. 13.
    Singh, M.K., Parhi, D.R.: Path optimisation of a mobile robot using an artificial neural network controller. International Journal of Systems Science 42(1), 107–120 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Singh, M.K., Parhi, D.R.: Intelligent neuro-controller for navigation of mobile robot. In: Proceedings of the International Conference on Advances in Computing, Communication and Control, ICAC3 2009, pp. 123–128 (2009)Google Scholar
  15. 15.
    Parhi, D.R., Singh, M.K.: Real-time navigational control of mobile robots using an artificial neural network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223(7), 1713–1725 (2009)CrossRefGoogle Scholar
  16. 16.
    SICK Group | Sensor Intelligence, http://www.sick.com (accessed: October 11, 2011)
  17. 17.
    Haykin, S.: Neural networks: a comprehensive foundation. Prentice-Hall (1999)Google Scholar
  18. 18.
    Wold, H.: Partial least squares (1985)Google Scholar
  19. 19.
    Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision 70(1), 77–90 (2006)CrossRefGoogle Scholar
  20. 20.
    Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: A survey of multilinear subspace learning for tensor data. Pattern Recognition 44, 1540–1551 (2011)MATHCrossRefGoogle Scholar
  21. 21.
    Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer (2007)Google Scholar
  22. 22.
    HyvArinen, A., Karhunen, J., Oja, E.: Independent component analysis, vol. 26. Wiley-interscience (2001)Google Scholar
  23. 23.
    Dumais, S.T.: Latent semantic analysis. Annual Review of Information Science and Technology 38(1), 188–230 (2004)CrossRefGoogle Scholar
  24. 24.
    Joliffe, I.T.: Principal component analysis. Springer, New York (1986)Google Scholar
  25. 25.
    Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural networks 2(6), 459–473 (1989)CrossRefGoogle Scholar
  26. 26.
    Balakirsky, S., Proctor, F.: USARSimGoogle Scholar
  27. 27.
    Carpin, S., Lewis, M., Wang, J.: USARSim: a robot simulator for research and education. Robotics and, 1400–1405 (2007)Google Scholar
  28. 28.
  29. 29.
    ActivMedia, ADEPT mobile robots, http://www.activrobots.com
  30. 30.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13 (2001)Google Scholar
  31. 31.
    Saad, D.: On-line learning in neural networks, vol. 17. Cambridge Univ. Pr. (1998)Google Scholar
  32. 32.
    Borodin, A., El-Yaniv, R.: Online computation and competitive analysis, vol. 53. Cambridge University Press, New York (1998)MATHGoogle Scholar
  33. 33.
    Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 116. Cambridge Univ. Press (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Hamid Dezfoulian
    • 1
  • Dan Wu
    • 1
  • Imran Shafiq Ahmad
    • 1
  1. 1.School of Computer ScienceUniversity of WindsorWindsorCanada

Personalised recommendations