Skip to main content

Fast and Robust Multi-people Tracking from RGB-D Data for a Mobile Robot

  • Chapter
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

Abstract

This paper proposes a fast and robust multi-people tracking algorithm for mobile platforms equipped with a RGB-D sensor. Our approach features an efficient point cloud depth-based clustering, an HOG-like classification to robustly initialize a person tracking and a person classifier with online learning to manage the person ID matching even after a full occlusion. For people detection, we make the assumption that people move on a ground plane. Tests are presented on a challenging real-world indoor environment and results have been evaluated with the CLEAR MOT metrics. Our algorithm proved to correctly track 96% of people with very limited ID switches and few false positives, with an average frame rate of 25 fps. Moreover, its applicability to robot-people following tasks have been tested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bajracharya, M., Moghaddam, B., Howard, A., Brennan, S., Matthies, L.H.: A fast stereo-based system for detecting and tracking pedestrians from a moving vehicle. International Journal of Robotics Research 28, 1466–1485 (2009)

    Article  Google Scholar 

  2. Bellotto, N., Hu, H.: Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of bayesian filters. Auton. Robots 28, 425–438 (2010)

    Article  Google Scholar 

  3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process. 2008, 1:1–1:10 (2008)

    Google Scholar 

  4. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Gool, L.V.: Robust tracking-by-detection using a detector confidence particle filter. In: IEEE International Conference on Computer Vision (October 2009)

    Google Scholar 

  5. Carballo, A., Ohya, A., Yuta, S.: People detection using range and intensity data from multi-layered laser range finders. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5849–5854 (2010)

    Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (June 2005)

    Google Scholar 

  7. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: IEEE Conference on Computer Vision and Pattern Recognition 2008, pp. 1–8 (2008)

    Google Scholar 

  8. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Moving obstacle detection in highly dynamic scenes. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, Piscataway, NJ, USA, pp. 4451–4458 (2009)

    Google Scholar 

  9. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  10. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1, Washington, DC, USA, pp. 260–267 (2006)

    Google Scholar 

  11. Konstantinova, P., Udvarev, A., Semerdjiev, T.: A study of a target tracking algorithm using global nearest neighbor approach. In: Proceedings of the 4th International Conference Conference on Computer Systems and Technologies: e-Learning, New York, NY, USA, pp. 290–295 (2003)

    Google Scholar 

  12. Luber, M., Spinello, L., Arras, K.O.: People tracking in rgb-d data with on-line boosted target models. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011 (2011)

    Google Scholar 

  13. Martin, C., Schaffernicht, E., Scheidig, A., Gross, H.-M.: Multi-modal sensor fusion using a probabilistic aggregation scheme for people detection and tracking. Robotics and Autonomous Systems 54(9), 721–728 (2006)

    Article  Google Scholar 

  14. Mozos, O., Kurazume, R., Hasegawa, T.: Multi-part people detection using 2d range data. International Journal of Social Robotics 2, 31–40 (2010)

    Article  Google Scholar 

  15. Navarro-Serment, L.E., Mertz, C., Hebert, M.: Pedestrian detection and tracking using three-dimensional ladar data. In: FSR, pp. 103–112 (2009)

    Google Scholar 

  16. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 (2011)

    Google Scholar 

  17. Satake, J., Miura, J.: Robust stereo-based person detection and tracking for a person following robot. In: Workshop on People Detection and Tracking IEEE ICRA (2009)

    Google Scholar 

  18. Spinello, L., Arras, K.O.: People detection in rgb-d data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011 (2011)

    Google Scholar 

  19. Spinello, L., Arras, K.O., Triebel, R., Siegwart, R.: A layered approach to people detection in 3d range data. In: Proc. 24th AAAI Conference on Artificial Intelligence, PGAI Track (AAAI 2010), Atlanta, USA (2010)

    Google Scholar 

  20. Spinello, L., Luber, M., Arras, K.O.: Tracking people in 3d using a bottom-up top-down people detector. In: IEEE International Conference on Robotics and Automation (ICRA 2011), Shanghai (2011)

    Google Scholar 

  21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001, vol. 1, pp. 511–518 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Basso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basso, F., Munaro, M., Michieletto, S., Pagello, E., Menegatti, E. (2013). Fast and Robust Multi-people Tracking from RGB-D Data for a Mobile Robot. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics