Advertisement

Moving Region Segmentation Using Sparse Motion Cue from a Moving Camera

  • Jungwon Kang
  • Sijong Kim
  • Taek Jun Oh
  • Myung Jin Chung
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 193)

Abstract

This paper presents a method for pixel-wise segmentation of moving regions using sparse motion cues on an image from a freely moving camera. The main idea is to utilize residual motion, i.e., motion relative to a background, on sparse grid points. Our algorithm consists of three parts: global motion estimation, characterization of points based on sparse motion cue, and pixel-wise labeling of moving regions. Experimental results on real image sequences are presented, showing the effectiveness of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poppe, C., Bruyne, S.D., Paridaens, T., Lambert, P., Walle, R.V.D.: Moving object detection in the H.264/AVC compressed domain for video surveillance applications. Journal of Visual Communication and Image Representation 20(6), 428–437 (2009)CrossRefGoogle Scholar
  2. 2.
    Lenz, P., Ziegler, J., Geiger, A., Roser, M.: Sparse scene flow segmentation for moving object detection in urban environments. In: IEEE Intelligent Vehicles Symposium, pp. 926–932 (2011)Google Scholar
  3. 3.
    Kundu, A., Krishna, K.M., Sivaswamy, J.: Moving object detection by multi-view geometric techniques from a single camera mounted robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4306–4312 (2009)Google Scholar
  4. 4.
    Bouwmans, T., El Baf, F., Vachon, B.: Background modeling using mixture of gaussians for foreground detection - A Survey. Recent Patents on Computer Science 1(3), 219–237 (2008)CrossRefGoogle Scholar
  5. 5.
    Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 747–757 (2000)CrossRefGoogle Scholar
  6. 6.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow. International Journal of Computer Vision 92, 1–31 (2011)CrossRefGoogle Scholar
  7. 7.
    Liu, F., Gleicher, M.: Learning color and locality cues for moving object detection and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 320–327 (2009)Google Scholar
  8. 8.
    Wang, Y., Ji, Q.: A dynamic conditional random field model for object segmentation in image sequences. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 264–270 (2005)Google Scholar
  9. 9.
    Klappstein, J., Vaudrey, T., Rabe, C., Wedel, A., Klette, R.: Moving object segmentation using optical flow and depth information. In: Proc. Pacific-Rim Symposium on Image and Video Technology, Tokyo, Japan, pp. 611–623 (2009)Google Scholar
  10. 10.
    Bugeau, A., Perez, P.: Detection and segmentation of moving objects in complex scenes. Computer Vision and Image Understanding 113(4), 459–476 (2009)CrossRefGoogle Scholar
  11. 11.
    Han, M., Xu, W., Gong, Y.: Video object segmentation by motion-based sequential feature clustering. In: 14th Annual ACM International Conference on Multimedia (2006)Google Scholar
  12. 12.
    Su, Y., Sun, M.-T., Hsu, V.: Global motion estimation from coarsely sampled motion vector field and the applications. IEEE Transactions on Circuits and Systems for Video Technology 15(2), 232–242 (2005)CrossRefGoogle Scholar
  13. 13.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  14. 14.
    Huber, P.J.: Robust statistics. John Wiler, New York (1981)MATHCrossRefGoogle Scholar
  15. 15.
    Haller, M., Krutz, A., Sikora, T.: Evaluation of pixel- and motion vector-based global motion estimation for camera motion characterization. In: Proc. WIAMIS, pp. 49–52 (2009)Google Scholar
  16. 16.
    Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust Regression Methods for Computer Vision: A Review. International Journal of Computer Vision 6(1), 59–70 (1991)CrossRefGoogle Scholar
  17. 17.
    Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 593–600 (1994)Google Scholar
  18. 18.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)Google Scholar
  19. 19.
    Szeliski, R., et al.: A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(6), 1068–1080 (2008)CrossRefGoogle Scholar
  20. 20.
    Datasets - Segmented foreground objects, http://www.sfu.ca/~ibajic/datasets.html
  21. 21.
    KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker, http://www.ces.clemson.edu/~stb/klt/
  22. 22.
    Wu, M., Peng, X., Zhang, Q.: Segmenting moving objects from a freely moving camera with an effective segmentation cue. Measurement Science & Technology 22(2) (2011) (article Number 025108)Google Scholar
  23. 23.
    Sand, P., Teller, S.: Particle Video: Long-Range Motion Estimation using Point Trajectories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2195–2202 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jungwon Kang
    • 1
  • Sijong Kim
    • 1
  • Taek Jun Oh
    • 1
  • Myung Jin Chung
    • 1
  1. 1.KAISTDaejeonRepublic of Korea

Personalised recommendations