Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 2502 Accesses

Abstract

As said in Introduction, the passage from integer orders of derivatives to real orders drastically enriches the family of differential equations: all gaps between integerorder equations become filled up by differential equations of intermediate noninteger orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel N.H., 1826, Auflösung einer mechanischen Aufgabe, J. für reine and angew. Math 1, 153–157.

    Google Scholar 

  • Achar B.N., Lorenzo C.F., and Hartley T.T., 2005, Initialization issue of the Caputo fractional derivative, In: Proceedings of the 2005 ASME Design Engineering Technical Conferences, Long Beach, California, September 24–28.

    Google Scholar 

  • Adomian G., 1988, A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications 135, 501–544.

    Google Scholar 

  • Adomian G., 1994, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  • Agrawal O.P., 2000, A general solution for the fourth-order fractional diffusion-wave equation, Fractional Calculation and Applied Analysis 3, 1–12.

    Google Scholar 

  • Agrawal O.P., 2001, A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain, Computers and Structures 79, 1497–1501.

    Google Scholar 

  • Agrawal O.P., 2002, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics 29, 145–155.

    Google Scholar 

  • Arkhincheev V.E., 2000, Anomalous diffusion and charge relaxation on comb model: exact solutions, Physica A 280, 304–314.

    Google Scholar 

  • Arkhincheev V.E., 2002, Diffusion on random comb structure: effective medium approximation, Physica A 307, 131–141.

    Google Scholar 

  • Arkhincheev V.E. and Baskin E.M., 1991, Anomalous diffusion and drift in the comb model of percolation clusters, J. Exper. Theor. Phys. 100, 292–300.

    Google Scholar 

  • Babenko Yu.I., 2009, Method of Fractional Differentiation in Applied Problems of Heat Mass Exchange, Professional, St-Petersburgs (in Russian).

    Google Scholar 

  • Baeumer B., Benson B.A., and Meerschaert M.M., 2005, Advection and dispersion in time and space, Physica A 350, 245–262.

    Google Scholar 

  • Baeumer B. and Meerschaert M.M., 2001, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal. 4, 481–500.

    Google Scholar 

  • Baeumer B., Meerschaert M.M., and Mortensen J., 2005, Space-time fractional derivative operators, Proc. Amer. Math. Soc. 133, 2273–2282.

    Google Scholar 

  • Bagley R.I. and Torvik P.J., 1983, A theoretical basis for the application of fractional calculus to viscoelasticity, J. of Rheology 27, 201–210.

    Google Scholar 

  • Bagley R.I. and Torvik P.J., 1986, On the fractional calculus model of viscoelastic behaviour, J. of Rheology 30, 133–155.

    Google Scholar 

  • Barkai E. and Silbey R.J., 2000, Fractional Kramers equation, J. Phys. Chem. B 104, 386–387.

    Google Scholar 

  • Barrett J.H., 1954, Differential equation of non-integer order, Canad. Journ. Math. 6, 529–541.

    Google Scholar 

  • Bazak K.C., Ray P.C., and Bera R.K., 2009, Exact analytical solution of fractional relaxation-oscillation equation by Adomian decomposition and He’s variational technique, Proc. ASME 2009 Intern. Design Eng. Techn. Conf., Computers and Information in Engineering Conference, IDETC/CIE 2009, San-Diego-California, USA.

    Google Scholar 

  • Benson D., Wheatcraft S., and Meerschaert M., 2000, The fractional-order governing equation of Lévy motion, Water Resources Research 36, 1413–1424.

    Google Scholar 

  • Berens H. and Westphal U., 1968, A Cauchy problem for a generalized wave equation, Acta Sci. Math. (Szeged) 29, 93–106.

    Google Scholar 

  • Biazar J., 2005, Solution of systems of integral-differential equations by Adomian decomposition method, Applied Mathematics and Computation 168(2), 1232–1238.

    Google Scholar 

  • Blackstock D.T., 1985, Generalized Burgers equation for plane waves, J. Acoust. Sco. Amer. 77, 2050–2053.

    Google Scholar 

  • Bologna M., Tsallis C., and Grigolini P., 2000, Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions, Phys Rev E 62, 2213–2218.

    Google Scholar 

  • Buckmaster J., 1984, Viscous sheets advancing over dry beds, J. Fluid Mech. 81, 735–756.

    Google Scholar 

  • Butzer P.L. and Westphal U., 2000, An introduction to fractional calculus, In: Applications of Fractional Calculus in Physics, ed. Hilfer R., World Scientific, Singapore, 1–85.

    Google Scholar 

  • Camargo R.F., Chiacchio A.O., and de Oliveira E. C., 2008, Differentiation to fractional orders and the fractional telegraph equation, J. of Math. Phys. 49, 033505.

    Google Scholar 

  • Campos L.M.B.C., 1990, On the solution of some simple fractional differential equations, Intern. J. Math. and Math. Sci. 13, 481–496.

    Google Scholar 

  • Carpinteri A. and Mainardi F. (eds.), 1997, Fractals and Fractional Calculus in Continuum Mechanics, Springer, Vienna and New York.

    Google Scholar 

  • Caputo M., Mainardi F., 1971, A new dissipation model based on memory mechanism, Pure and Applied Geophysics 91, 134–147.

    Google Scholar 

  • Chaves A., 1998, A fractional diffusion equation to describe Lévy flights, Phys. Lett. A 239, 13–16.

    Google Scholar 

  • Chen W. and Holm S., 2004, Lévy stable distribution and [0,2] power dependence of the absorption coefficient on the frequency, Chin. Phys. Lett. 22, 2601–2603.

    Google Scholar 

  • Debbi L., 2006, Explicit solutions of some fractional partial differential equations via stable sub-ordinators, J. Appl. Math. Stoch. Anal., Article ID 93502, 1–18.

    Google Scholar 

  • Douglas J.F., 2000, Polymer science applications of path-integrations, integral equations and fractional calculus. In: Applications of Fractional Calculus in Physics, ed. Hilfer R., World Scientific, Singapore, 241–330.

    Google Scholar 

  • Dubkov A.A., Spagnolo B., and Uchaikin V.V., 2008, Lévy flight superdiffusion: an introduction, Int. J. of Bifurcation and Chaos 18, 2649–2672.

    Google Scholar 

  • Du M.L. and Wang Z.H., 2011, Initialized fractional differential equations with Riemann-Liouville fractional-order derivative, Eur. Phys. J. Special Topics 193, 49–60.

    Google Scholar 

  • El-Borai M.M., 2004, The fundamental solutions for fractional evolution equations of parabolic type, J. Appl. Math. Stoch. Anal. 3, 197–211.

    Google Scholar 

  • El-Borai M.M., 2005, On some fractional evolution equations with nonlocal conditions, Int. J. Pure Appl. Math. 24, 405–413.

    Google Scholar 

  • El-Sayed A.M.A., 1995, Fractional order evolution equations, J. Fract. Calc. 7, 89–100.

    Google Scholar 

  • El-Sayed A.M.A., 1996, Fractional order diffusion-wave equations, International J. Theoretical Physics 35, 311–322.

    Google Scholar 

  • El-Sayed A.M.A., 1998, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33, 181–186.

    Google Scholar 

  • Fujita Y., 1990, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka Journal of Mathematics 27, 309–321.

    Google Scholar 

  • Fujita Y., 1990a, Integrodifferential equation which interpolates the heat equation and the wave equation. II, Osaka Journal of Mathematics 27, 797–804.

    Google Scholar 

  • Fukunaga M. and Shimizu N., 2004, Role of prehistories in the initial value problems of fractional viscoelastic equations, Nonlinear Dynamics 38, 207–220.

    Google Scholar 

  • Gerasimov A.N., 1948, Generalization of linear laws of deformation and its application to the internal friction problems, Appl. Mathem. Mechaics 12, 251–260 (in Russian).

    Google Scholar 

  • Giona M., Cerbelli S., and Roman, H. E., 1992, Fractional diffusion equation and relaxation in complex viscoelastic materials, Physica A 191, 449–453.

    Google Scholar 

  • Giona M. and Roman H.E., 1992, Fractional diffusion equation for transport phenomena in random media, Physica A 185, 87–97.

    Google Scholar 

  • Gorenflo R., 1970, Nichtnegativitaets-und substanzerhaltende Differenzenschemata fuer lineare Diffusionsgleichungen, Numerische Mathematik 14, 448–467.

    Google Scholar 

  • Gorenflo R. and Mainardi F., 1997, Fractional calculus: integral and differential equations of fractional order, in: Fractals and Fractional Calculus in Continuum Mechanics, eds. Carpinteri A. and Mainardi F., Springer Verlag, Vienna, New York, 223–276.

    Google Scholar 

  • Gorenflo R., Luchko Yu., and Mainardi F., 2000, Wright functions as scale-invariant solutions of the diffusion-wave equation, Journal of Computational and Applied Mathematics 118, 175–191.

    Google Scholar 

  • Gorenflo R. and Mainardi F., 1997, Fractional calculus: integral and differential equations of fractional order, In: Fractals and Fractional Calculus in Continuum Mechanics, eds. Carpinteri A. and Mainardi F., Springer, Vienna and New York, 223–276.

    Google Scholar 

  • Gorenflo R., Mainardi F., and Vivoli A., 2007, Continuous time random walk and parametric subordination in fractional diffusion, Chaos, Solitons & Fractals 34, 87–103.

    Google Scholar 

  • Gorenflo R. and Rutman, 1995, On ultraslow and on intermediate processes, in: Transform Methods and Special Functions, eds. Rusev P., Dimovsky I. and Kiryakova V., Science Culture Technology, Singapore, 61–81.

    Google Scholar 

  • Gorenflo R. and Vessella S., 1991, Abel Integral Equations: Analysis and Applications, Springer, Berlin.

    Google Scholar 

  • Heymans N. and Podlubny I., 2006, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Reologica Acta 45, 765–771.

    Google Scholar 

  • Hilfer R., 1999, On fractional diffusion and its relation with continuous time random walks, In: Anomalous Diffusion: From Basis to Applications, eds. Kutner R., Pekalski A., and Sznajd-Weron K., Springer Verlag, Berlin, 77–82.

    Google Scholar 

  • Hilfer R., 2000, Fractional diffusion based on Riemann-Liouville fractional Derivatives, Journal of Physical Chemistry B 104, 3914–3917.

    Google Scholar 

  • Hilfer R., 2003, On fractional diffusion and continuous time random walks, Physica A 329, 35–39.

    Google Scholar 

  • Hilfer R. and Anton L., 1995, Fractional master equations and fractal time random walks, Phys. Rev. E 51, R848–R851.

    Google Scholar 

  • Ilic M., Liu F., Turner L. and Anh V., 2005, Numerical approximation on a fractional-in-space diffusion equation, I, Fractional Calculus and Applied Analysis 8, 323–341.

    Google Scholar 

  • Ilic M., Liu F., Turner L. and Anh V., 2006, Numerical approximation on a fractional-in-space diffusion equation, II, Fractional Calculus and Applied Analysis 9, 333–349.

    Google Scholar 

  • Kilbas A.A. and Saigo M., 1996, On Mittag-Leffler type function, fractional calculus operators, and solutions of integral equations, Integral Transforms and Special Functions 4, 355–370.

    Google Scholar 

  • Kilbas A.A., Srivastava H.M., and Trujillo J.J., 2003, Fractional differential equations: an emergent field in applied and mathematical sciences, In: Factorization, Singular Operators and Related Problems, eds. Samko S., Lebre A., dos Santos A.F., Kluwer Acad. Pub., Dordrecht, 151–173.

    Google Scholar 

  • Kilbas A.A., Srivastava H.M., and Trujillo J.J., 2006, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam.

    Google Scholar 

  • Kiryakova V., 1994, Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series, 301. Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Kochubei A.N., 1990, Fractional order diffusion, Diff. Equations 26, 485–492.

    Google Scholar 

  • Kosztolowicz T., 2004, From the solutions of diffusion equation to the solutions of subdiffusive one, J. Phys. A: Math. Gen. 37, 10779–10789.

    Google Scholar 

  • Kotulski M., 1995, Asymptotic distributions of continuous-time random walks: a probabilistic approach, J. Stat. Phys. 81, 777–792.

    Google Scholar 

  • Kurulay M. and Secer A., 2011, Variational iteration method for solving nonlinear fractional integro-differential equation, Int. J. of Computer Science and Emerging Technologies 2(1), 18–20.

    Google Scholar 

  • Lenzi E.K., Malacarne L. C., Mendes R.S., and Pedron I. T., 2002, Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions, Physica A 319, 245–252.

    Google Scholar 

  • Lenzi E. K., Mendes R.S., Goncalves G., Lenzi M.K., and da Silva L.R., 2006, Fractional diffusion equation and Green function approach: Exact solutions, Physica A 360, 215–226.

    Google Scholar 

  • Lighthill J., 1980, Waves in Fluids, Cambridge.

    Google Scholar 

  • Lorenzo C. F. and Hartley T.T., 1998, Initialization, conceptualization and application in the generalized fractional calculus, NASA/Tp-1998-208415, December.

    Google Scholar 

  • Lorenzo C.F. and Hartley T. T., 2000, Initialized fractional calculus. Int. J. Appl. Math. 3, 249–265.

    Google Scholar 

  • Lorenzo C.F. and Hartley T. T., 2008, Initialization of fractional-order operators and fractional differential equations, ASME J. Comput. Nonlinear Dyn. 3, 021101, 1–9.

    Google Scholar 

  • Lu J.-F. and Hanyga A., 2004, Numerical modelling method for wave propagation in a linear viscoelastic medium with singular memory, Geophysical Journal International 159, 688–702.

    Google Scholar 

  • Mainardi F., 1977, Fractional calculus: Some basic problems in continuum and statistical mechanics, In: Fractals and Fractional Calculus in Continuum Mechanics, eds. Carpinteri A. and Mainardi F., Springer, Vienna and New York, 291–348.

    Google Scholar 

  • Mainardi F., 1994, On the initial value problem for the fractional diffusion-wave equation, In: Waves and Stability in Continuous Media, eds. Rionero S. and Ruggeri T., World Scientific, Singapore.

    Google Scholar 

  • Mainardi F., 1995, The time-fractional diffusion-wave equation, Izv. Vyssh. Uchebn. Zavedeniy, Radiofizika 38, 20–36.

    Google Scholar 

  • Mainardi F., 1996, Fractional relaxation-oscillation and fractional diffusion — wave phenomena, Chaos, Solitons & Fractals 7, 1461–1477.

    Google Scholar 

  • Mainardi F., 1997, Fractional calculus: some basic problem in continuum and statistical mechanics, In: Fractals and Fractional Calculus in Continuum Mechanics, eds. Carpinteri A. and Mainardi F., Springer, Vienna and New York, 291–348.

    Google Scholar 

  • Mainardi F., Gorenflo R., and Scalas E., 2004, A fractional generalization of the Poisson processes, Vietnam J. Mathematics 32 SI, 53–64.

    Google Scholar 

  • Mainardi F., Luchko Yu., and Pagnini G., 2001, The fundamental solution of the space time fractional diffusion equation, Frac. Calc. Appl. Anal. 4, 153–192.

    Google Scholar 

  • Mainardi F., Pagnini G., and Gorenflo R., 2003, Mellin transform and subordination laws in fractional diffusion processes, Frac. Calc. Appl. Anal. 6, 441–459.

    Google Scholar 

  • Mainardi F. and Paradisi P., 1997, A model of diffusive waves in viscoelasticity based on fractional calculus, In: Proceedings of the IEEE Conference on Decision and Control, Vol. 5, IEEE, New York, 4961–4966.

    Google Scholar 

  • Mainardi F., Vivoli A., and Gorenflo R., 2005, Continuous time random walk and time fractional diffusion: a numerical comparison between the fundamental solutions, Fluct. Noise Lett. 5, L291–L297.

    Google Scholar 

  • Meerschaert M.M., Benson D.A., Scheffler H.P. and Baeumer B., 2002, Stochastic solutions of space fractional diffusion equation, Phys. Rev. E 65, 041103, 1–4.

    Google Scholar 

  • Meerschaert M.M., Benson D.A., Scheffler H.P., and Becker-Kern P., 2002, Governing equations and solutions of anomalous random walk limits, Phys. Rev. E 66, 060102.

    Google Scholar 

  • Meerschaert M.M. and Scheffler H.P., 2004, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Prob. 41, 623–638.

    Google Scholar 

  • Metzler R., Barkai E., and Klafter J., 1999, Anomalous transport in disordered systems under the influence of external fields, Physica A 266, 343–350.

    Google Scholar 

  • Metzler R. and Klafter J., 2000, Boundary value problems for fractional Diffusion equations, Physica A 278, 107–125.

    Google Scholar 

  • Metzler R., Klafter J., and Sokolov I., 1998, Anomalous transport in external fields: continuous time random walks and fractional diffusion equations extended, Phys. Rev. E 58, 1621–1633.

    Google Scholar 

  • Metzler R. and Nonnenmacher T., 2002, Space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys. 284, 67–90.

    Google Scholar 

  • Miller K.S. and Ross B., 1993, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York.

    Google Scholar 

  • Mittal R.C. and Nigam R., 2008, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. of Appl. Math. and Mech. 4, 87–94.

    Google Scholar 

  • Momani S. and Ibrahim R.W., 2007, Analytical solutions of a fractional oscillator by the decomposition method, International Journal of Pure and Applied Mathematics 37, 119–131.

    Google Scholar 

  • Monin A.S. and Yaglom A.M., 1971, Statistical Fluid Mechanics, Vol. I, MIT, Cambridge, MA.

    Google Scholar 

  • Muskat M., 1937, The Flow of Homogeneous Fluid Through Porous Media, McGraw-Hill, New York.

    Google Scholar 

  • Nakhushev A.M., 2000, Elements of Fractional Calculus and their Application, Nalchik, Kabarda-Balkar Sci. Center of Russian Acad. Sci. (in Russian).

    Google Scholar 

  • Nakhushev A.M., 2003, Fractional Calculus and its Application, Fizmatlit, Moscow.

    Google Scholar 

  • Nakhusheva V.A., 2002, Some Classes of Differential Equations for Mathematical Models of Nonlocal Physical Processes, Nalchik, Kabarda-Balkar Sci. Center of Russian Acad. Sci. (in Russian).

    Google Scholar 

  • Narahary Achar B.N., Hanneker J.W., Enck T. and Clarke T., 2001, Dynamics of the fractional oscillator, Physica A 297, 361–367.

    Google Scholar 

  • Nigmatullin R.R., 1986, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. (b) 133, 425–430.

    Google Scholar 

  • Nonnenmacher T.F., 1990, Fractional integral and differential equations for a class of Lévy-type probability densities, J. Phys. A: Math. Gen. 23, L697–L700.

    Google Scholar 

  • Oldham K.B. and Spanier J., 1974, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York and London.

    Google Scholar 

  • Ortigueira M.D., 2003, On the initial conditions in continous-time fractional linear systems, Signal Processing 83, 2301–2309.

    Google Scholar 

  • O’Shaughnessy B. and Procaccia I., 1985, Analytical solutions for diffusion of fractal objects. Phys. Rev. Lett. 54, 455–458.

    Google Scholar 

  • Ortigueira M.D. and Coito F.J., 2008, Initial conditions: what are we talking about? In: Proc. of 3rd IFAC Worlshop on Fractional Differentiation and its Application, Ankara, Turkey, 5–7 November.

    Google Scholar 

  • Pierce A.D., 1989, Acoustics, an Introduction to its Physical Principles and Applications, Acoustical Society of America, New York.

    Google Scholar 

  • Plastino A.R. and Plastino A., 1995, Non-extensive statistical mechanics and generalized Fokker-Planck equation, Physica A 222, 347–354.

    Google Scholar 

  • Plotkin S.S. and Wolynes P.G., 1998, Non-Markovian configurational diffusion and reaction coordinates for protein folding, Phys. Rev. Lett. 80, 5015–5018.

    Google Scholar 

  • Podlubny I., 1999, Fractional Differential Equations, Academic Press, New York.

    Google Scholar 

  • Polubarinova-Kochina P.Y., 1962, Theory of Ground Water Movement, Princeton University Press, Princeton.

    Google Scholar 

  • Pskhu A.V., 2005, Partial Differential Equations of Fractional Order, Nauka, Moscow (In Russian).

    Google Scholar 

  • Pskhu A.V., 2005a, Boundary Problems for Differential Equations with Partial Derivatives of Fractional and Continous Orders, Nalchik, Kabarda-Balkar Sci. Center of Russian Acad. Sci. (in Russian).

    Google Scholar 

  • Ren F.Y., Liang J.R., Wang X.T., 1999, The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media, Phys. Letters A 252, 141–150.

    Google Scholar 

  • Roman H. E. and Alemany P.A., 1994, Continuous-time random walks and the fractional diffusion equation, Journal of Physics A 27, 3407–3410.

    Google Scholar 

  • Rosenblatt M., 1956, Remarks on some nonparametric estimates of a density function, Annals of Mathematical Statistics 27, 832–837.

    Google Scholar 

  • Ross B., 1975, A brief history and exposition of the fundamental theory of fractional calculus, Lect. Notes Math. 457, 1–36.

    Google Scholar 

  • Rossikhin Y.A. and Shitikova M.V., 1997, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews 50, 15–67.

    Google Scholar 

  • Rozmej P. and Karczewska A., 2005, Numerical solutions to integrodifferential equations which interpolate heat and wave equations, International Journal on Differential Equations and Applications 10(1), 15–27.

    Google Scholar 

  • Sabatier J., Merveilaut M., Malti R., and Oustaloup A., 2010, How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numerical Simulations 15, 1318–1326.

    Google Scholar 

  • Saichev A.I. and Zaslavsky G.M., 1997, Fractional kinetic equations: solutions and applications, Chaos 7, 753–764.

    Google Scholar 

  • Samko S.G., Kilbas A.A., and Marichev O.I., 1993, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, Longhorne, PA.

    Google Scholar 

  • Samorodnitsky G. and Taqqu M.S., 1994, Stable nonGaussian Random Processes, Chapman & Hill.

    Google Scholar 

  • Sanz-Serna J.M., 1988, A numerical method for a partial integro-differential equation, SIAM Numerical Analysis 25, 319–327.

    Google Scholar 

  • Schiessel H. and Blumen A., 1995, Fractal aspects in polymer science, Fractals 3, 483–490.

    Google Scholar 

  • Schiessel H., Friedrich Chr., and Blumen A., 2000, Applications to problems in polymer physics and rheology, In: Applications of fractional calculus in physics, ed. Hilfer R., World Scientific, Singapore, 331–376.

    Google Scholar 

  • Schneider W.R. and Wyss W., 1989, Fractional diffusion and wave equations, J. Math. Phys. 30, 134–144.

    Google Scholar 

  • Serbina L.I., 2002, Nonlocal Mathematical Models of Transport Processes in Systems with a Fractal Structure, Nalchik, Kabarda-Balkar Sci. Center of Russian Acad. Sci. (in Russian).

    Google Scholar 

  • Shen S., Liu F., Anh V., and Turner I., 2008, The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation, IMA Journal of Applied Mathematics 73, 850–872.

    Google Scholar 

  • Suarez L.E. and Shokooh A., 1997, An eigenvector expansion method for the solution of motion containing fractional derivatives, ASME. J. Appl. Mech. 64, 629–635.

    Google Scholar 

  • Szabo T.L., 1994, Time domain wave equations for lossy media obeying a frequency power law, J. Acoust. Soc. Amer. 96, 491–500.

    Google Scholar 

  • Szabo T.L. and Wu J., 2000, Time domain wave equations for lossy media obeying a frequency power law, J. Acoust. Soc. Amer. 107, 2437–2446.

    Google Scholar 

  • Trigeassou J.C. and Maamri N., 2011, Initial conditions and initialization of linear fractional differential equations, J. Signal Processing 91, 427–436.

    Google Scholar 

  • Tsallis C., 2009, Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Spriger, New York.

    Google Scholar 

  • Tsallis C. and Bukman D.J., 1996, Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis, Phys. Rev. E 54, R2197–R2200.

    Google Scholar 

  • Uchaikin V.V., Cahoy D.O., and Sibatov R. T., 2008, Fractional processes: from Poisson to branching one, Int. J. of Bif. and Chaos 18, 2717–2725.

    Google Scholar 

  • Uchaikin V.V., 1999, Evolution equations for Lévy stable processes, Int. J. of Theor. Phys. 38, 2375–2386.

    Google Scholar 

  • Uchaikin V.V., 2000, Montroll-Weiss problem, fractional equations, and stable distributions, Int. J. of Theor. Phys. 39, 2087–2105.

    Google Scholar 

  • Uchaikin V.V., 2002, Subordinated Lévy-Feldheim Motion as a Model of Anomalous Self-Similar Diffusion, Physica A 305, 205–208.

    Google Scholar 

  • Uchaikin V.V., 2002, Multidimensional Symmetric Anomalous Diffusion, Chem. Phys. 88, 1141–1155.

    Google Scholar 

  • Uchaikin V.V., 2003, Relaxation processes and fractional differential equations, Int. J. of Theor. Phys. 42, 121–134.

    Google Scholar 

  • Uchaikin V.V., 2003, Anomalous diffusion and fractional stable distributions, J. of Exper. and Theor. Phys. 97, 810–825.

    Google Scholar 

  • Uchaikin V.V., 2003, Self-similar anomalous diffusion and Lévy-stable laws, Physics-Uspekhi 46, 821–849.

    Google Scholar 

  • Uchaikin V.V., 2008, Method of Fractional Derivatives, Artishok, Ulyanovsk (in Russian).

    Google Scholar 

  • Uchaikin V.V., Gusarov G.G., and Korobko D.A., 1998, Fractal properties of clusters generated by branching processes, Journ. of Math. Sciences 92, 3940–3948.

    Google Scholar 

  • Uchaikin V.V. and Gusarov V.V., 1997, Lévy flight applied to random media problems, Journ. of Math. Phys. 38, 2453–2464.

    Google Scholar 

  • Uchaikin V.V. and Gusarov V.V., 1997a, The exactly resolved nonlattica model of random media based on Markov walks with a stable law for jumps, Journ. of Math. Sciences 83, 95–102.

    Google Scholar 

  • Uchaikin V.V. and Saenko V.V., 2003, Stochastic solution of partial differential equations of fractional orders, Siberian J. Num. Math. 6, 197–203.

    Google Scholar 

  • Uchaikin V.V. and Sibatov R.T., 2004, Lévy walks on a one-dimensional Lorentz gas with trapping atoms, Research Report N 4/04, The Nottingham Trent University, Nottigham NG1 4BU, UK.

    Google Scholar 

  • Uchaikin V.V. and Sibatov R.T., 2004a, Walk on one-dimensional stochastic fractal distributions of trapping atoms, Obozr. Prikl. Prom. Matem. 11, 148–149 (in Russian).

    Google Scholar 

  • Uchaikin V.V. and Sibatov R.T. 2009, Statistical model of fluorescence blinking, J. of Exper. and Theor. Phys. 109, 537–546.

    Google Scholar 

  • Uchaikin V.V. and Zolotarev V. M., 1999, Chance and Stability, Stable Distributions and Their Applications, VSP, Utrecht.

    Google Scholar 

  • Weron A. and Weron K., 1985, Stable measures and processes in statistical physics, Lecture Notes Math 1153, Springer, Berlin, 440–452.

    Google Scholar 

  • West B.J., Bologna M., and Grigolini P., 2003, Physics of Fractal Operators, Springer, New York.

    Google Scholar 

  • West B.J., Grigolini P., Metzler R., and Nonnenmacher T.F., 1997, Fractional diffusion and Lévy stable processes, Physical Review E 55, 99–106.

    Google Scholar 

  • Wyss W., 1986, The fractional diffusion equation, J. Math. Phys. 27, 2782–2785.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uchaikin, V.V. (2013). Equations and Solutions. In: Fractional Derivatives for Physicists and Engineers. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33911-0_5

Download citation

Publish with us

Policies and ethics