Overview: Object Features

  • Christian Demant
  • Carsten GarnicaEmail author
  • Bernd Streicher-Abel


Most examples in the preceding chapters used various features to check image objects for validity. It is therefore high time to give an overview of such features. From the numerous features described in literature, we have selected some that have proved their worth in many industrial applications. At the same time, we will present some further insights into the difficulties encountered when applying common everyday notions to the discrete world of digital images.


Form Factor Principal Axis Gray Level Euler Number Contour Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (2005) Taschenbuch der Mathematik, 6th edn. Harri Deutsch, Frankfurt a. MGoogle Scholar
  2. Davis LS (1981) Image texture analysis techniques—a survey. In: Simon JC, Haralick RM (eds) Digital image processing. Reidel, BostonGoogle Scholar
  3. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson Education, Upper Saddle RiverGoogle Scholar
  4. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187CrossRefzbMATHGoogle Scholar
  5. Jähne B (2005) Digitale Bildverarbeitung, 6th edn. Springer, BerlinGoogle Scholar
  6. Julesz B (1975) Experiments in the visual perception of texture. Sci Am 232(4):34–43CrossRefGoogle Scholar
  7. Mandelbrot B (1987) Fractal geometry of nature. W.H. Freeman & Co., New YorkzbMATHGoogle Scholar
  8. Nischwitz A, Fischer M, Haberäcker P (2007) Computergrafik und Bildverarbeitung, 2nd edn. Vieweg, WiesbadenGoogle Scholar
  9. Parker JR (1994) Practical computer vision using C. Wiley, New YorkGoogle Scholar
  10. Russ JC (2007) The image processing handbook, 5th edn. CRC Press, Boca RatonzbMATHGoogle Scholar
  11. Sonka M, Hlavac V, Roger B (2008) Image processing, analysis, and machine vision, 3rd edn. Cengage Learning, StamfordGoogle Scholar
  12. Tönnies KD (2005) Grundlagen der Bildverarbeitung. Pearson Studium, BostonGoogle Scholar
  13. van Gool L, Dewaele P, Oosterlinck A (1983) Texture analysis anno 1983. Comput Vision Graph Image Proc 29(3):336–357CrossRefGoogle Scholar
  14. Waszkewitz P (1999) Detektierung von Beschriftungen auf metallischen Oberflächen mit Hilfe von Texturmethoden und Neuronalen Netzen. PhD thesis, University of StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Demant
    • 1
  • Carsten Garnica
    • 1
    Email author
  • Bernd Streicher-Abel
    • 1
  1. 1.NeuroCheck GmbHRemseckGermany

Personalised recommendations