Advertisement

Single Color One-Shot Scan Using Topology Information

  • Hiroshi Kawasaki
  • Hitoshi Masuyama
  • Ryusuke Sagawa
  • Ryo Furukawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7585)

Abstract

In this paper, we propose a new technique to achieve one-shot scan using single color and static pattern projector; such a method is ideal for acquisition of a moving object. Since a projector-camera systems generally have uncertainties on retrieving correspondences between the captured image and the projected pattern, many solutions have been proposed. Especially for one-shot scan, which means that only a single image is used for reconstruction, positional information of a pixel on the projected pattern should be encoded by spatial and/or color information. Although color information is frequently used for encoding, it is severely affected by texture and material of the object. In this paper, we propose a technique to solve the problem by using topological information instead of colors. Our technique successfully realizes one-shot scan with monochrome pattern.

Keywords

Topology Information Grid Pattern Dynamic Scene Corner Angle Rhombus Tiling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Microsoft: Xbox 360 Kinect (2010), http://www.xbox.com/en-US/kinect
  2. 2.
    Kawasaki, H., Furukawa, R., Sagawa, R., Yagi, Y.: Dynamic scene shape reconstruction using a single structured light pattern. In: CVPR, pp. 1–8 (2008)Google Scholar
  3. 3.
    Sagawa, R., Ota, Y., Yagi, Y., Furukawa, R., Asada, N., Kawasaki, H.: Dense 3d reconstruction method using a single pattern for fast moving object. In: ICCV (2009)Google Scholar
  4. 4.
    Ulusoy, A.O., Calakli, F., Taubin, G.: One-shot scanning using de bruijn spaced grids. In: The 7th IEEE Conf. 3DIM (2009)Google Scholar
  5. 5.
    Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognition 37, 827–849 (2004)zbMATHCrossRefGoogle Scholar
  6. 6.
    Salvi, J., Batlle, J., Mouaddib, E.M.: A robust-coded pattern projection for dynamic 3D scene measurement. Pattern Recognition 19, 1055–1065 (1998)CrossRefGoogle Scholar
  7. 7.
    Je, C., Lee, S.-W., Park, R.-H.: High-Contrast Color-Stripe Pattern for Rapid Structured-Light Range Imaging. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 95–107. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Zhang, L., Curless, B., Seitz, S.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: 3DPVT, pp. 24–36 (2002)Google Scholar
  9. 9.
    Furukawa, Y., Ponce, J.: Dense 3D motion capture from synchronized video streams. In: CVPR (2008)Google Scholar
  10. 10.
    Sagawa, R., Kawasaki, H., Furukawa, R., Kiyota, S.: Dense one-shot 3D reconstruction by detecting continuous regions with parallel line projection. In: ICCV (2011)Google Scholar
  11. 11.
    Canesta, Inc.: CanestaVision EP Development Kit (2010), http://www.canesta.com/devkit.html
  12. 12.
    Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: Proc. SIGGRAPH, pp. 438–446 (2002)Google Scholar
  13. 13.
    Weise, T., Leibe, B., Van Gool, L.: Fast 3D scanning with automatic motion compensation. In: CVPR (2007)Google Scholar
  14. 14.
    Narasimhan, S.G., Koppal, S.J., Yamazaki, S.: Temporal Dithering of Illumination for Fast Active Vision. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 830–844. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Tajima, J., Iwakawa, M.: 3-D data acquisition by rainbow range finder. In: ICPR, pp. 309–313 (1990)Google Scholar
  16. 16.
    Zhang, S., Huang, P.: High-resolution, real-time 3D shape acquisition. In: Proc. Conference on Computer Vision and Pattern Recognition Workshop, p. 28 (2004)Google Scholar
  17. 17.
    Maruyama, M., Abe, S.: Range sensing by projecting multiple slits with random cuts. In: SPIE Optics, Illumination, and Image Sensing for Machine Vision IV, vol. 1194, pp. 216–224 (1989)Google Scholar
  18. 18.
    Artec: United States Patent Application 2009005924 (2007j)Google Scholar
  19. 19.
    Vuylsteke, P., Oosterlinck, A.: Range image acquisition with a single binary-encoded light pattern. IEEE Trans. on PAMI 12, 148–164 (1990)CrossRefGoogle Scholar
  20. 20.
    Koninckx, T., Van Gool, L.: Real-time range acquisition by adaptive structured light. IEEE Transaction Pattern Analysis Machine Intelligence 28, 432–445 (2006)CrossRefGoogle Scholar
  21. 21.
    Gardner, M.: Penrose Tiles to Trapdoor Ciphers. Cambridge University Press (1997)Google Scholar
  22. 22.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In: CVPR (2007)Google Scholar
  23. 23.
    Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. IJCV 70, 41–54 (2006)CrossRefGoogle Scholar
  24. 24.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17, 167–174 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hiroshi Kawasaki
    • 1
  • Hitoshi Masuyama
    • 1
  • Ryusuke Sagawa
    • 2
  • Ryo Furukawa
    • 3
  1. 1.Kagoshima UniversityKagoshimaJapan
  2. 2.AISTTsukubaJapan
  3. 3.Hiroshima City UniversityHiroshimaJapan

Personalised recommendations