Advertisement

GPS-Based Multi-viewpoint Integration for Anticipative Scene Analysis

  • Kohji Kamejima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7585)

Abstract

A multi-viewpoint integration scheme is introduced to recognize scene features prior to physical access. In this schematics, chromatic complexity of vehicle’s- and bird’s-eye-views of roadway scenes are matched to extend GPS tracks towards possible destinations. Saliency patterns arising in destination images are anticipatively extracted to control the focus of inherent and machine vision to what to be analyzed.

Keywords

Multi-viewpoint Image Scene Analysis Chromatic Complexity GPS Signal Processing Image Saliency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnsley, M.F., Demko, S.: Iterated function systems and the global construction of fractals. The Proceedings of the Royal Society of London A-399, 243–275 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ebner, M.: Color Constancy. John Wiley and Sons, West Sussex (2007)Google Scholar
  3. 3.
    Itti, L., Kock, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  4. 4.
    Kamejima, K.: GPS/GNSS residual analysis via competitive-growth modeling of ionosphere dynamics. In: Signal Processing XIII: Proceedings of the 13th European Signal Processing Conference (EUSIPCO 2005), Antalya, Turkey, pp. WedAmOR4–2(4 pages). EURASIP (2005)Google Scholar
  5. 5.
    Kamejima, K.: Generation and adaptation of transferable roadway model for anticipative road following on satellite-roadway-vehicle network. SICE Journal of Control, Measurement, and System Integration 4(2), 97–104 (2011)CrossRefGoogle Scholar
  6. 6.
    Kamejima, K.: Multi-fractal articulation of environmental saliency for contextual visualization of naturally complex scenes. International Journal of Innovative Computing, Information and Control 8(3B), 2233–2248 (2012)Google Scholar
  7. 7.
    Kwak, S., Ko, B., Byun, H.: Automatic salient-object extraction using the contrast map and salient points. In: Proceedings Pacific-Rim Conference on Multimedia, pp. II:138–II:145 (2004)Google Scholar
  8. 8.
    Tan, H.-S., Huang, J.: DGPS-based vehicle-to-vehicle cooperative collision warning: Engineering feasibility viewpoints. IEEE Transactions on Intelligent Transportation Systems ITS-7(4), 415–428 (2006)CrossRefGoogle Scholar
  9. 9.
    Wang, J., Schroedl, S., Mezger, K., Ortloff, R., Joos, A., Passegger, T.: Lane keeping based on location technology. IEEE Transactions on Intelligent Transportation Systems ITS-6(3), 351–356 (2005)CrossRefGoogle Scholar
  10. 10.
    Wong, E.: Stochastic Processes in Information and Dynamical Systems. McGraw-Hill, New York (1971)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kohji Kamejima
    • 1
  1. 1.Faculty of Information Science and TechnologyOsaka Institute of TechnologyHirakataJapan

Personalised recommendations