Advertisement

Fast Stixel Computation for Fast Pedestrian Detection

  • Rodrigo Benenson
  • Markus Mathias
  • Radu Timofte
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7585)

Abstract

Applications using pedestrian detection in street scene require both high speed and quality. Maximal speed is reached when exploiting the geometric information provided by stereo cameras. Yet, extracting useful information at speeds higher than 100 Hz is a non-trivial task. We propose a method to estimate the ground-obstacles boundary (and its distance), without computing a depth map. By properly parametrizing the search space in the image plane we improve the algorithmic performance, and reach speeds of \(200\ \mbox{Hz}\) on a desktop CPU. When connected with a state of the art GPU objects detector, we reach high quality detections at the record speed of \(165\ \mbox{Hz}\).

Keywords

Object Detection Ground Plane Horizontal Gradient Stereo Match Obstacle Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: CVPR (2012)Google Scholar
  2. 2.
    Benenson, R., Timofte, R., Van Gool, L.: Stixels estimation without depthmap computation. In: ICCV, CVVT Workshop (2011)Google Scholar
  3. 3.
    Badino, H., Franke, U., Pfeiffer, D.: The Stixel World - A Compact Medium Level Representation of the 3D-World. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 51–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Franke, U., Kutzbach, I.: Fast stereo based object detection for stop and go traffic. In: IVS (1996)Google Scholar
  5. 5.
    Franke, U., Joos, A.: Real-time stereo vision for urban traffic scene understanding. In: IVS (2000)Google Scholar
  6. 6.
    Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection on non flat road geometry through ’v-disparity’ representation. In: IVS (2002)Google Scholar
  7. 7.
    Nedevschi, S., Danescu, R., Frentiu, D., Marita, T., Oniga, F., Pocol, C., Schmidt, R., Graf, T.: High accuracy stereo vision system for far distance obstacle detection. In: IVS (2004)Google Scholar
  8. 8.
    Hu, Z., Lamosa, F., Uchimura, K.: A complete u-v-disparity study for stereovision based 3D driving environment analysis. In: 3DIM (2005)Google Scholar
  9. 9.
    Seki, A., Okutomi, M.: Robust obstacle detection in general road environment based on road extraction and pose estimation. In: IVS (2006)Google Scholar
  10. 10.
    Bajracharya, M., Moghaddam, B., Howard, A., Brennan, S., Matthies, L.H.: A fast stereo-based system for detecting and tracking pedestrians from a moving vehicle. IJRR (2009)Google Scholar
  11. 11.
    Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust multi-person tracking from a mobile platform. PAMI (2009)Google Scholar
  12. 12.
    Okutomi, M., Noguchi, S.: Extraction of road region using stereo images. In: ICPR, vol. 1, pp. 853–856 (1998)Google Scholar
  13. 13.
    Badino, H., Franke, U., Mester, R.: Free space computation using stochastic occupancy grids and dynamic programming. In: ICCV, Workshop on Dynamical Vision (2007)Google Scholar
  14. 14.
    Kubota, S., Nakano, T., Okamoto, Y.: A global optimization algorithm for real-time on-board stereo obstacle detection systems. In: IVS, Turkey (June 2007)Google Scholar
  15. 15.
    Enzweiler, M., Hummel, M., Pfeiffer, D., Franke, U.: Efficient stixel-based object recognition. In: IVS (2012)Google Scholar
  16. 16.
    Günyel, B., Benenson, R., Timofte, R., Van Gool, L.: Stixels Motion Estimation without Optical Flow Computation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 528–539. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rodrigo Benenson
    • 1
  • Markus Mathias
    • 1
  • Radu Timofte
    • 1
  • Luc Van Gool
    • 1
  1. 1.ESAT-PSI-VISICS/IBBTKU LeuvenBelgium

Personalised recommendations