Advocatus Diaboli – Exploratory Enrichment of Ontologies with Negative Constraints

  • Sébastien Ferré
  • Sebastian Rudolph
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7603)


With the persistent deployment of ontological specifications in practice and the increasing size of the deployed ontologies, methodologies for ontology engineering are becoming more and more important. In particular, the specification of negative constraints is often neglected by the human expert, whereas they are crucial for increasing an ontology’s deductive potential. We propose a novel, arguably cognitively advantageous methodology for identifying and adding missing negative constraints to an existing ontology. To this end, a domain expert navigates through the space of satisfiable class expressions with the aim of finding absurd ones, which then can be forbidden by adding a respective constraint to the ontology. We give the formal foundations of our approach, provide an implementation, called Possible World Explorer (PEW) and illustrate its usability by describing prototypical navigation paths using the example of the well-known pizza ontology.


Domain Expert Description Logic Formal Concept Analysis Class Expression Negative Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M.M. (ed.) IJCAI, pp. 230–235 (2007)Google Scholar
  2. 2.
    Ferré, S., Hermann, A.: Semantic Search: Reconciling Expressive Querying and Exploratory Search. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 177–192. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Ferré, S., Rudolph, S.: PEW! PEW! Tech. rep., Institut AIFB, KIT, Karlsruhe (April 2012),
  4. 4.
    Fleischhacker, D., Völker, J.: Inductive Learning of Disjointness Axioms. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Gómez-Pérez, A., Euzenat, J. (eds.): ESWC 2005. LNCS, vol. 3532. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-Pérez and Euzenat [5], pp. 182–197Google Scholar
  7. 7.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC (2009)Google Scholar
  8. 8.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67. AAAI Press (2006)Google Scholar
  9. 9.
    Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In: AAAI. pp. 1408–1413. AAAI Press (2007)Google Scholar
  10. 10.
    Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning Disjointness for Debugging Mappings between Lightweight Ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. of Artificial Intelligence Research 36, 165–228 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Nikitina, N., Rudolph, S., Glimm, B.: Interactive ontology revision. Web Semantics: Science, Services and Agents on the World Wide Web 12-13(0), 118–130 (2012)CrossRefGoogle Scholar
  13. 13.
    OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C Recommendation (October 27, 2009),
  14. 14.
    Rudolph, S.: Exploring Relational Structures Via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Rudolph, S.: Acquiring Generalized Domain-Range Restrictions. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 32–45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Rudolph, S.: Foundations of Description Logics. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez and Euzenat [5], pp. 226–240Google Scholar
  18. 18.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sébastien Ferré
    • 1
  • Sebastian Rudolph
    • 2
  1. 1.IRISA, Université Rennes 1France
  2. 2.KITKarlsruheGermany

Personalised recommendations