Advertisement

Re-identification with RGB-D Sensors

  • Igor Barros Barbosa
  • Marco Cristani
  • Alessio Del Bue
  • Loris Bazzani
  • Vittorio Murino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)

Abstract

People re-identification is a fundamental operation for any multi-camera surveillance scenario. Until now, it has been performed by exploiting primarily appearance cues, hypothesizing that the individuals cannot change their clothes. In this paper, we relax this constraint by presenting a set of 3D soft-biometric cues, being insensitive to appearance variations, that are gathered using RGB-D technology. The joint use of these characteristics provides encouraging performances on a benchmark of 79 people, that have been captured in different days and with different clothing. This promotes a novel research direction for the re-identification community, supported also by the fact that a new brand of affordable RGB-D cameras have recently invaded the worldwide market.

Keywords

Re-identification RGB-D sensors Kinect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)Google Scholar
  3. 3.
    Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 649–656. IEEE (2011)Google Scholar
  4. 4.
    Velardo, C., Dugelay, J.-L.: Improving identification by pruning: a case study on face recognition and body soft biometric. Eurecom, Tech. Rep. EURECOM+3593 (January 2012)Google Scholar
  5. 5.
    Wang, Y.-F., Chang, E.Y., Cheng, K.P.: A video analysis framework for soft biometry security surveillance. In: Proceedings of the third ACM International Workshop on Video Surveillance & Sensor Networks, VSSN 2005, pp. 71–78 (2005)Google Scholar
  6. 6.
    Demirkus, M., Garg, K.: Automated person categorization for video surveillance using soft biometrics. In: Proc of SPIE, Biometric Technology (2010)Google Scholar
  7. 7.
    Dantcheva, A., Dugelay, J.-L., Elia, P.: Person recognition using a bag of facial soft biometrics (BoFSB). In: 2010 IEEE International Workshop on Multimedia Signal Processing, pp. 511–516. IEEE (October 2010)Google Scholar
  8. 8.
    Freedman, B., Shpunt, A., Machline, M., Ariel, Y.: US Patent - US2010/0118123 (2010)Google Scholar
  9. 9.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR 2011, pp. 1297–1304. IEEE (June 2011)Google Scholar
  10. 10.
    Bo, L., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. In: CVPR 2011, pp. 1729–1736. IEEE (June 2011)Google Scholar
  11. 11.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: British Machine Vision Conference, BMVC (2011)Google Scholar
  12. 12.
    Javed, O., Shafique, K., Rasheed, Z., Shah, M.: Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views. Comput. Vis. Image Underst. 109(2), 146–162 (2008)CrossRefGoogle Scholar
  13. 13.
    Baltieri, D., Vezzani, R., Cucchiara, R.: SARC3D: A New 3D Body Model for People Tracking and Re-identification. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part I. LNCS, vol. 6978, pp. 197–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    OpenNI (February 2012) Openni framework@ONLINE, http://www.openni.org/
  15. 15.
    Marton, Z.C., Rusu, R.B., Beetz, M.: On Fast Surface Reconstruction Methods for Large and Noisy Datasets. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12-17 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Igor Barros Barbosa
    • 1
    • 3
  • Marco Cristani
    • 1
    • 2
  • Alessio Del Bue
    • 1
  • Loris Bazzani
    • 1
  • Vittorio Murino
    • 1
  1. 1.Pattern Analysis and Computer Vision (PAVIS)Istituto Italiano di Tecnologia (IIT)GenovaItaly
  2. 2.Dipartimento di InformaticaUniversity of VeronaVeronaItaly
  3. 3.Université de BourgogneLe CreusotFrance

Personalised recommendations