Advertisement

Attacks on Fixed Apparatus Quantum Key Distribution Schemes

  • Michel Boyer
  • Ran Gelles
  • Tal Mor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)

Abstract

We consider quantum key distribution implementations in which the receiver’s apparatus is fixed and does not depend on a choice of basis at each qubit transmission. We show that, although theoretical quantum key distribution (QKD) is proven secure, such implementations are totally insecure against a strong eavesdropper that has a one-time (single) access to the receiver’s equipment. The attack we present here, the “fixed-apparatus attack” causes a potential risk to the usefulness of several recent QKD implementations.

Keywords

Quantum Key Distribution Security Implementation loopholes Quantum Cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alléaume, R., Treussart, F., Messin, G., Dumeige, Y., Roch, J.F., Beveratos, A., Brouri-Tualle, R., Poizat, J.P., Grangier, P.: Experimental open-air quantum key distribution with a single-photon source. New Journal of Physics 6(1), 92 (2004)CrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68(21), 3121–3124 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (December 1984)Google Scholar
  4. 4.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. Physical Review Letters 99(14), 140501 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Physical Review Letters 85(6), 1330–1333 (2000)CrossRefGoogle Scholar
  7. 7.
    Bruß, D.: Optimal Eavesdropping in Quantum Cryptography with Six States. Physical Review Letters 81, 3018–3021 (1998)CrossRefGoogle Scholar
  8. 8.
    Buttler, W.T., Hughes, R.J., Kwiat, P.G., Lamoreaux, S.K., Luther, G.G., Morgan, G.L., Nordholt, J.E., Peterson, C.G., Simmons, C.M.: Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81, 3283–3286 (1998)CrossRefGoogle Scholar
  9. 9.
    Dusek, M., Lütkenhaus, N., Hendrych, M.: Chapter 5 quantum cryptography. In: Wolf, E. (ed.) Progress in Optics, vol. 49, pp. 381–454. Elsevier (2006)Google Scholar
  10. 10.
    Elliott, C., Pearson, D., Troxel, G.: Quantum cryptography in practice. In: SIGCOMM 2003: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 227–238. ACM Press, New York (2003)CrossRefGoogle Scholar
  11. 11.
    Gelles, R., Mor, T.: On the Security of Interferometric Quantum Key Distribution. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) TPNC 2012. LNCS, vol. 7505, pp. 133–146. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74(1), 145–195 (2002)CrossRefGoogle Scholar
  13. 13.
    Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Information and Computation 5, 325–360 (2004), arXiv:quant-ph/0212066Google Scholar
  14. 14.
    Hughes, R.J., Morgan, G.L., Peterson, C.G.: Quantum key distribution over a 48 km optical fibre network. Journal of Modern Optics 47(2-3), 533–547 (2000)MathSciNetGoogle Scholar
  15. 15.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New Journal of Physics 4(1), 43 (2002)CrossRefGoogle Scholar
  16. 16.
    Hughes, R., Nordholt, J., Morgan, G., Peterson, C.: Free space quantum key distribution in daylight. Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, QELS 2002. Technical Digest, p. 266 (2002)Google Scholar
  17. 17.
    Hwang, W.Y., Lim, I.T., Park, J.W.: No-clicking event in quantum key distribution. ArXiv:quant-ph/0412206 (2004)Google Scholar
  18. 18.
    Jaeger, G., Sergienko, A.: Entangled states in quantum key distribution. In: AIP Conference Proceedings, vol. 810(1), pp. 161–167 (2006)Google Scholar
  19. 19.
    Kurtsiefer, C., Zarda, P., Halder, M., Weinfurter, H., Gorman, P.M., Tapster, P.R., Rarity, J.G.: Quantum cryptography: A step towards global key distribution. Nature 419 (2002)Google Scholar
  20. 20.
    Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. Journal of Modern Optics 52, 691–705 (2005)CrossRefGoogle Scholar
  21. 21.
    Muller, A., Breguet, J., Gisin, N.: Experimental demonstration of quantum cryptography using polarized photons in optical fibre over more than 1 km. EPL (Europhysics Letters) 23(6), 383 (1993)CrossRefGoogle Scholar
  22. 22.
    Muller, A., Zbinden, H., Gisin, N.: Quantum cryptography over 23 km in installed under-lake telecom fibre. EPL (Europhysics Letters) 33(5), 335 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nambu, Y., Hatanaka, T., Nakamura, K.: Planar lightwave circuits for quantum cryptographic systems. ArXiv:quant-ph/0307074 (2003)Google Scholar
  24. 24.
    Nambu, Y., Hatanaka, T., Nakamura, K.: Bb84 quantum key distribution system based on silica-based planar lightwave circuits. Japanese Journal of Applied Physics 43(8B), L1109–L1110 (2004)CrossRefGoogle Scholar
  25. 25.
    Rarity, J., Tapster, P., Gorman, P., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New Journal of Physics 4, 82 (2002)CrossRefGoogle Scholar
  26. 26.
    Townsend, P.D.: Secure key distribution system based on quantum cryptography. Electronics Letters 30, 809–811 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(8), 087901 (2003)CrossRefGoogle Scholar
  28. 28.
    Zbinden, H.: Experimental quantum cryptography. In: Lo, H., Spiller, T., Popescu, S. (eds.) Introduction to Quantum Computation and Information, pp. 120–142. World Scientific (1998)Google Scholar
  29. 29.
    Zbinden, H., Bechmann-Pasquinucci, H., Gisin, N., Ribordy, G.: Quantum cryptography. Applied Physics B: Lasers and Optics 67, 743–748 (1998)CrossRefGoogle Scholar
  30. 30.
    Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michel Boyer
    • 1
  • Ran Gelles
    • 2
  • Tal Mor
    • 3
  1. 1.Département IROUniversité de Montréal (Québec)Canada
  2. 2.Computer Science DepartmentUniversity of CaliforniaLos AngelesUSA
  3. 3.Computer Science DepartmentTechnionHaifaIsrael

Personalised recommendations