Advertisement

Computational Intelligence in Astronomy – A Win-Win Situation

  • Peter Tiňo
  • Somak Raychaudhury
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)

Abstract

Large archives of astronomical data (images, spectra and catalogues of derived parameters) are being assembled worldwide as part of the Virtual Observatory project. In order for such massive heterogeneous data collections to be of use to astronomers, development of Computational Intelligence techniques that would combine modern machine learning with deep domain knowledge is crucial. Both fields - Computer Science and Astronomy - can hugely benefit from such a research program. Astronomers can gain new insights into structures buried deeply in the data collections that would, without the help of Computational Intelligence, stay masked. On the other hand, computer scientists can get inspiration and motivation for development of new techniques driven by the specific characteristics of astronomical data and the need to include domain knowledge in a fundamental way. In this review we present three diverse examples of such successful symbiosis.

Keywords

Light Curve Binary Star Monthly Notice Time Delay Estimation Gravitational Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banerji, M., Lahav, O., Lintott, C.J., Abdalla, F.B., Schawinski, K., Bamford, S.P., Andreescu, D., Murray, P., Raddick, M.J., Slosar, A., Szalay, A., Thomas, D., Vandenberg, J.: Galaxy Zoo: reproducing galaxy morphologies via machine learning. Monthly Notices of the Royal Astronomical Society 406, 342–353 (2010)CrossRefGoogle Scholar
  2. 2.
    Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)CrossRefGoogle Scholar
  3. 3.
    Burud, I., Magain, P., Sohy, S., Hjorth, J.: A novel approach for extracting time-delays from lightcurves of lensed quasar images. Astronomy and Astrophysics 380(2), 805–810 (2001)CrossRefGoogle Scholar
  4. 4.
    Cuevas-Tello, J.C., Tiňo, P., Raychaudhury, S., Yao, X., Harva, M.: Uncovering delayed patterns in noisy and irregularly sampled time series: An astronomy application. Pattern Recognition 43(3), 1165–1179 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cuevas-Tello, J.C., Tiňo, P., Raychaudhury, S.: How accurate are the time delay estimates in gravitational lensing? Astronomy and Astrophysics 454, 695–706 (2006)CrossRefGoogle Scholar
  6. 6.
    Cuevas-Tello, J.C., Tiňo, P., Raychaudhury, S.: A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 614–621. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Eigenbrod, A., Courbin, F., Vuissoz, C., Meylan, G., Saha, P., Dye, S.: COSMOGRAIL: The COSmological MOnitoring of GRAvItational Lenses. I. How to sample the light curves of gravitationally lensed quasars to measure accurate time delays. Astronomy and Astrophysics 436, 25–35 (2005)CrossRefGoogle Scholar
  8. 8.
    Fardal, M.A., Babul, A., Geehan, J.J., Guhathakurt, P.: Investigating the andromeda stream - ii. orbital fits and properties of the progenitor. Monthly Notices of the Royal Astronomical Society 366, 1012–1028 (2006)Google Scholar
  9. 9.
    Gianniotis, N., Tiňo, P., Spreckley, S., Raychaudhury, S.: Topographic Mapping of Astronomical Light Curves via a Physically Inspired Probabilistic Model. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 567–576. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Gianniotis, N., Tiňo, P.: Visualisation of tree-structured data through generative probabilistic modelling. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, pp. 97–102. D-Facto (2007)Google Scholar
  11. 11.
    Girolami, M., He, C.: Probability density estimation from optimally condensed data samples. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1253–1264 (2003)CrossRefGoogle Scholar
  12. 12.
    Guinan, E.F., Engle, S.G.: The brave new world of binary star studies. Astrophysics Space Science 304, 5–11 (2006)CrossRefGoogle Scholar
  13. 13.
    Harva, M., Raychaudhury, S.: Bayesian estimation of time delays between unevenly sampled signals. In: IEEE International Workshop on Machine Learning for Signal Processing, pp. 111–116. IEEE (2006)Google Scholar
  14. 14.
    Hilditch, R.W.: An introduction to close binary stars. Cambridge University Press (2001)Google Scholar
  15. 15.
    Inada, N., Oguri, M., Becker, R.H., Shin, M.-S., Richards, G.T., Hennawi, J.F., White, R.L., Pindor, B., Strauss, M.A., Kochanek, C.S., Johnston, D.E., Gregg, M.D., Kayo, I., Eisenstein, D., Hall, P.B., Castander, F.J., Clocchiatti, A., Anderson, S.F., Schneider, D.P., York, D.G., Lupton, R., Chiu, K., Kawano, Y., Scranton, R., Frieman, J.A., Keeton, C.R., Morokuma, T., Rix, H.-W., Turner, E.L., Burles, S., Brunner, R.J., Sheldon, E.S., Bahcall, N.A., Masataka, F.: The Sloan Digital Sky Survey Quasar Lens Search. II. Statistical Lens Sample from the Third Data Release. Astronomical Journal 135, 496–511 (2008)CrossRefGoogle Scholar
  16. 16.
    Kochanek, C., Schechter, P.: The Hubble constant from gravitational lens time delays. In: Freedman, W.L. (ed.) Measuring and Modeling the Universe, from the Carnegie Observatories Centennial Symposia, vol. 2, p. 117. Cambridge University Press (2004)Google Scholar
  17. 17.
    Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  18. 18.
    Kundic, T., Turner, E.L., Colley, W.N., Gott-III, J.R., Rhoads, J.E., Wang, Y., Bergeron, L.E., Gloria, K.A., Long, D.C., Malhorta, S., Wambsganss, J.: A robust determination of the time delay in 0957+561A,B and a measurement of the global value of Hubble’s constant. Astrophysical Journal 482(1), 75–82 (1997)CrossRefGoogle Scholar
  19. 19.
    Lahav, O., Naim, A., Buta, R.J., Corwin, H.G., de Vaucouleurs, G., Dressler, A., Huchra, J.P., van den Bergh, S., Raychaudhury, S., Sodre Jr., L., Storrie-Lombardi, M.C.: Galaxies, Human Eyes, and Artificial Neural Networks. Science 267, 859–862 (1995)CrossRefGoogle Scholar
  20. 20.
    McConnachie, A.W., Irwin, M.J., Ibata, R.A., Dubinski, J., Widrow, L.M., Martin, N.F., Côté, P., Dotter, A.L., Navarro, J.F., Ferguson, A.M.N., Puzia, T.H., Lewis, G.F., Babul, A., Barmby, P., Bienaymé, O., Chapman, S.C., Cockcroft, R., Collins, M.L.M., Fardal, M.A., Harris, W.E., Huxor, A., Mackey, A.D., Peñarrubia, J., Rich, R.M., Richer, H.B., Siebert, A., Tanvir, N., Valls-Gabaud, D., Venn, K.A.: The remnants of galaxy formation from a panoramic survey of the region around M31. Nature 461, 66–69 (2009)CrossRefGoogle Scholar
  21. 21.
    Nolan, L.A., Harva, M.O., Kabán, A., Raychaudhury, S.: A data-driven Bayesian approach for finding young stellar populations in early-type galaxies from their ultraviolet-optical spectra. Monthly Notices of the Royal Astronomical Society 366, 321–338 (2006)Google Scholar
  22. 22.
    Nolan, L.A., Raychaudhury, S., Kabán, A.: Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society 375, 381–387 (2007)CrossRefGoogle Scholar
  23. 23.
    Oguri, M.: Gravitational Lens Time Delays: A Statistical Assessment of Lens Model Dependences and Implications for the Global Hubble Constant. Astrophysical Journal 660, 1–15 (2007)CrossRefGoogle Scholar
  24. 24.
    Ovaldsen, J.E., Teuber, J., Schild, R.E., Stabell, R.: New aperture photometry of QSO 0957+561; application to time delay and microlensing. Astronomy and Astrophysics 402(3), 891–904 (2003)CrossRefGoogle Scholar
  25. 25.
    Pelt, J., Hjorth, J., Refsdal, S., Schild, R., Stabell, R.: Estimation of multiple time delays in complex gravitational lens systems. Astronomy and Astrophysics 337(3), 681–684 (1998)Google Scholar
  26. 26.
    Pelt, J., Kayser, R., Refsdal, S., Schramm, T.: Time delay controversy on QSO 0957+561 not yet decided. Astronomy and Astrophysics 286(1), 775–785 (1994)Google Scholar
  27. 27.
    Pelt, J., Kayser, R., Refsdal, S., Schramm, T.: The light curve and the time delay of QSO 0957+561. Astronomy and Astrophysics 305(1), 97–106 (1996)Google Scholar
  28. 28.
    Pijpers, F.P.: The determination of time delays as an inverse problem - the case of the double quasar 0957+561. Monthly Notices of the Royal Astronomical Society 289(4), 933–944 (1997)Google Scholar
  29. 29.
    Pindor, B.: Discovering Gravitational Lenses through Measurements of Their Time Delays. Astrophysical Journal 626, 649–656 (2005)CrossRefGoogle Scholar
  30. 30.
    Press, W.H., Rybicki, G.B., Hewitt, J.N.: The time delay of gravitational lens 0957+561, I. Methodology and analysis of optical photometric Data. Astrophysical Journal 385(1), 404–415 (1992)CrossRefGoogle Scholar
  31. 31.
    Refsdal, S.: On the possibility of determining the distances and masses of stars from the gravitational lens effect. Monthly Notices of the Royal Astronomical Society 134, 315–319 (1966)Google Scholar
  32. 32.
    Saha, P.: Gravitational Lensing. In: Murdin, P. (ed.) Encyclopedia of Astronomy and Astrophysics. Nature Publishing, London (2001)Google Scholar
  33. 33.
    Sun, J., Kaban, A., Raychaudhury, S.: Robust Mixtures in the Presence of Measurement Errors. In: International Conference on Machine Learning, pp. 847–854 (June 2007)Google Scholar
  34. 34.
    Tiňo, P., Kaban, A., Sun, Y.: A generative probabilistic approach to visualizing sets of symbolic sequences. In: KDD 2004: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–706. ACM Press (2004)Google Scholar
  35. 35.
    Vincent, P., Bengio, Y.: Manifold parzen windows. Advances in Neural Information Processing Systems 15, 825–832 (2003)Google Scholar
  36. 36.
    Wadadekar, Y.: Estimating Photometric Redshifts Using Support Vector Machines. Publications of the Astronomical Society of the Pacific 117, 79–85 (2005)CrossRefGoogle Scholar
  37. 37.
    Walsh, D., Carswell, R.F., Weymann, R.J.: 0957 + 561 A, B - Twin quasistellar objects or gravitational lens. Nature 279, 381–384 (1979)CrossRefGoogle Scholar
  38. 38.
    Wang, X., Tiňo, P., Fardal, M., Raychaudhury, S., Babul, A.: Fast Parzen Window Density Estimator. In: Proceedings of the International Joint Conference on Neural Networks - IJCNN 2009, Atlanta, Georgia, pp. 473–475. IEEE Computer Society (2009)Google Scholar
  39. 39.
    Chen, S., Hong, X., Harris, C.J.: A forward-constrained regression algorithm for sparse kernel density estimation. IEEE Transactions on Neural Networks 19, 193–198 (2008)CrossRefGoogle Scholar
  40. 40.
    Zhang, K., Kwok, J.T.: Simplifying mixture models through function approximation. Advances in Neural Information Processing Systems 15, 825–832 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Peter Tiňo
    • 1
  • Somak Raychaudhury
    • 2
  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK
  2. 2.School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Personalised recommendations