Skip to main content

Theory and Applications of DNA Codeword Design

  • Conference paper
Book cover Theory and Practice of Natural Computing (TPNC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7505))

Included in the following conference series:

Abstract

We survey the origin, current progress and applications on one major roadblock to the development of analytic models for DNA computing and self-assembly, namely the so-called Codeword Design problem. The problem calls for finding large sets of single DNA strands that do not crosshybridize to themselves or to their complements (so-called domains in the language of chemical reaction networks) and has been recognized as an important problem in DNA computing, self-assembly, DNA memories and phylogenetic analyses because of their error correction and prevention properties. Major recent advances include the development of experimental techniques to search for such codes, as well as a theoretical framework to analyze this problem, despite the fact that it has been proven to be NP-complete using any single concrete metric space to model the Gibbs energy. In this framework, codeword design is reduced to finding large sets of strands maximally separated in DNA spaces and, therefore, the key to finding such sets would lie in knowledge of the geometry of these spaces. A new general technique has been recently found to embed them in Euclidean spaces in a hybridization-affinity-preserving manner, i.e., in such a way that oligos with high/low hybridization affinity are mapped to neighboring/remote points in a geometric lattice, respectively. This isometric embedding materializes long-held mataphors about codeword design in terms of sphere packing and leads to designs that are in some cases known to be provable nearly optimal for some oligo sizes. It also leads to upper and lower bounds on estimates of the size of optimal codes of size up to 32 −mers, as well as to infinite families of DNA strand lengths, based on estimates of the kissing (or contact) number for sphere packings in Euclidean spaces. Conversely, this reduction suggests interesting new algorithms to find dense sphere packing solutons in high dimensional spheres using prior results for codeword design priorly obtained by experimental or theoretical molecular means, as well as to a proof that finding these bounds exactly is NP-complete in general. Finally, some applications and research problems arising from these results are described that might be of interest for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Computing 20(3), 263–277 (2002)

    Article  MATH  Google Scholar 

  3. Bobba, K.C., Neel, A.J., Phan, V., Garzon, M.H.: “Reasoning” and “Talking” DNA: Can DNA Understand English? In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 337–349. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chen, J., Deaton, R., Garzon, M., Wood, D.H., Bi, H., Carpenter, D., Wang, Y.Z.: Characterization of Non-Crosshybridizing DNA Oligonucleotides Manufactured in vitro. J. of Natural Computing 5(2), 165–181 (2006)

    Article  MATH  Google Scholar 

  5. Deaton, J., Chen, J., Garzon, M., Wood, D.H.: Test Tube Selection of Large Independent Sets of DNA Oligonucleotides, pp. 152–166. World Publishing Co., Singapore (2006) (Volume dedicated to Ned Seeman on occasion of his 60th birthday)

    Google Scholar 

  6. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of Self-assembly at Temperature One. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 35–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Garzon, M.H., Bobba, K.: A Geometric Approach to Gibbs Energy Landscapes and Optimal DNA Codeword Design. In: Stefanovic, D., Turberfield, A. (eds.) DNA 18. LNCS, vol. 7433, pp. 73–85. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Garzon, M.H., Bobba, K.C., Neel, A.J., Phan, V.: DNA-Based Indexing. Int. J. of Nanotechnology and Molecular Computing 2(3), 25–45 (2010)

    Article  Google Scholar 

  9. Garzon, M.H., Wong, T.Y.: DNA Chips for Species identification and Biological Phylogenies. J. Natural Computing 10, 375–389 (2011)

    Article  MathSciNet  Google Scholar 

  10. Garzon, M.H., Phan, V., Neel, A.: Optimal Codes for Computing and Self-Assembly. Int. J. of Nanotechnology and Molecular Computing 1, 1–17 (2009)

    Article  Google Scholar 

  11. Garzon, M.H., Yan, H. (eds.): DNA 2007. LNCS, vol. 4848. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  12. Garzon, M.H., Phan, V., Bobba, K.C., Kontham, R.: Sensitivity and Capacity of Microarray Encodings. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 81–95. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Garzon, M.H., Deaton, R.: Codeword Design and Information Encoding in DNA Ensembles. J. of Natural Computing 3(3), 253–292 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garzon, M.H., Blain, D., Neel, A.J.: Virtual Test Tubes for Biomolecular Computing. J. of Natural Computing 3(4), 461–477 (2004)

    Article  MathSciNet  Google Scholar 

  15. Garzon, M.H., Neathery, P.I., Deaton, R., Murphy, R.C., Franceschetti, D.R., Stevens Jr., S.E.: A New Metric for DNA Computing. In: Koza, J.R., et al. (eds.) Proc. 2nd Annual Genetic Programming Conference, pp. 230–237. Morgan Kaufmann (1997)

    Google Scholar 

  16. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. J. Computational Biology 8(3), 201–219 (2001)

    Article  Google Scholar 

  17. Neel, A.J., Garzon, M.H.: DNA-based Memories: A Survey. SCI, vol. 113, pp. 259–275. Springer (2008)

    Google Scholar 

  18. Neel, A., Garzon, M.H.: Semantic Retrieval in DNA-Based Memories with Gibbs Energy Models. Biotechnology Progress 22(1), 86–90 (2006)

    Article  Google Scholar 

  19. Phan, V., Garzon, M.H.: On Codeword Design in Metric DNA Spaces. J. Natural Computing 8(3), 571–588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roman, J.: The Theory of Error-Correcting Codes. Springer, Berlin (1995)

    Google Scholar 

  21. Sahu, S., Yin, P., Reif, J.H.: A Self-assembly Model of Time-Dependent Glue Strength. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 290–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95(4), 1460–1465 (1998)

    Article  Google Scholar 

  23. Seeman, N.: Nuclei-Acid Junctions and Lattices. J. Theoretical Biology 99, 237–247 (1982)

    Article  Google Scholar 

  24. Seeman, N.: DNA in a material world. Nature 421, 427–431 (2003)

    Article  MathSciNet  Google Scholar 

  25. Tkachenko, A.V.: Theory of Programmable Hierarchic Self-Assembly. Phys. Rev. Lett. 106, 255501 (2011)

    Article  Google Scholar 

  26. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based DNA strand design. Nucleic Acids Res. 33(15), 4951–4964 (2005)

    Article  Google Scholar 

  27. Qian, L., Winfree, E.: Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  28. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  29. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. Thesis, California Institute of Technology (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garzon, M.H. (2012). Theory and Applications of DNA Codeword Design. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Theory and Practice of Natural Computing. TPNC 2012. Lecture Notes in Computer Science, vol 7505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33860-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33860-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33859-5

  • Online ISBN: 978-3-642-33860-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics