Tuning Organic Electronics via Photoreactive Thin Organic Films

  • Matthias Edler
  • Thomas Griesser
  • Gregor Trimmel
  • Wolfgang Kern
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 173)

Abstract

The present chapter deals with photoreactive thin films and describes processes to tune both surface and material properties by means of UV-irradiation. Selected applications of these materials as UV tunable interfaces in organic electronics are demonstrated. Two examples of photoreactive polymers together with the underlying photochemistry are presented. Polymers bearing aryl ester groups or N-arylamide units in their side-chain undergo the photo-Fries reaction under UV-light which yields hydroxyketone and aminoketone units as photoproducts, respectively. The reaction results in a change in surface polarity, which is accompanied by a significant increase in refractive index (Δn up to +0.10). Another example is given with polymers bearing ortho-nitrobenzyl ester units in their side chain. UV-irradiation causes the scission of the ester unit and the formation of polar carboxylic acids. Employing these photosensitive polymers as interfacial layers between the organic semiconductor and the gate dielectric, the characteristics of OTFTs such as carrier mobility and threshold voltage can be varied over a wide range. Moreover, the epitaxial growth of organic semiconductors (para-sexiphenyl and pentacene) on these surfaces can be influenced by photochemical adjustment of surface polarity. Proceeding from thin polymer layers to molecular layers, several examples for photoreactive mono- and oligolayers on metals and oxidic surfaces are presented. These layers, containing aryl ester units for example, were modified by UV illumination and post-exposure derivatization. Lithographic patterns in molecular layers were characterized with friction force microscopy.

References

  1. 1.
    G.J. Leggett, Chem. Soc. Rev. 35, 1150–1161 (2006) CrossRefGoogle Scholar
  2. 2.
    S. Sun, G.J. Leggett, Nano Lett. 7, 3753–3758 (2007) CrossRefGoogle Scholar
  3. 3.
    P. Ribič, V. Kalihari, C. Frisbie, G. Bratina, Phys. Rev. B 80, 115307 (2009) CrossRefGoogle Scholar
  4. 4.
    G. Hernandez-Sosa, C. Simbrunner, T. Höfler, A. Moser, O. Werzer, B. Kunert, G. Trimmel, W. Kern, R. Resel, H. Sitter, Org. Electron. 10, 326–332 (2009) CrossRefGoogle Scholar
  5. 5.
    M. Marchl, M. Edler, A. Haase, A. Fian, G. Trimmel, T. Griesser, E. Zojer, B. Stadlober, Adv. Mater. 22, 5361–5365 (2010) CrossRefGoogle Scholar
  6. 6.
    K. Fries, G. Finck, Chem. Ber. 41, 4271–4284 (1908) CrossRefGoogle Scholar
  7. 7.
    J.C. Anderson, C.B. Reese, Proc. Chem. Soc. (1960), p. 217 Google Scholar
  8. 8.
    C.E. Kalmus, D.M. Hercules, J. Am. Chem. Soc. 96, 449–456 (1974) CrossRefGoogle Scholar
  9. 9.
    S. Lochbrunner, M. Zissler, J. Piel, E. Riedle, A. Spiegel, T. Bach, J. Chem. Phys. 120, 11634 (2004) CrossRefGoogle Scholar
  10. 10.
    H. Barzynski, D. Sänger, Angew. Makromol. Chem. 93, 131–141 (1981) CrossRefGoogle Scholar
  11. 11.
    G. Ciamician, P. Silber, Chem. Ber. 34, 2040–2046 (1901) CrossRefGoogle Scholar
  12. 12.
    J.A. Barltrop, P.J. Plant, P. Schofield, Chem. Commun. (London) 822 (1966) Google Scholar
  13. 13.
    C.H. Bamford, R.G.W. Norrish, J. Mater. Chem. 1504–1511 (1934) Google Scholar
  14. 14.
    C.G. Bochet, J. Chem. Soc., Perkin Trans. 1, 125–142 (2002) Google Scholar
  15. 15.
    T. Griesser, A. Wolfberger, M. Edler, M. Belzik, G. Jakopic, G. Trimmel, W. Kern, J. Polym. Sci., Part A, Polym. Chem. 48, 3507–3514 (2010) CrossRefGoogle Scholar
  16. 16.
    T. Köpplmayr, M. Cardinale, G. Jakopic, G. Trimmel, W. Kern, T. Griesser, J. Mater. Chem. 21, 2965 (2011) CrossRefGoogle Scholar
  17. 17.
    T. Griesser, T. Höfler, G. Jakopic, M. Belzik, W. Kern, G. Trimmel, J. Math. Chem. 19, 4557–4565 (2009) CrossRefGoogle Scholar
  18. 18.
    T. Höfler, T. Grießer, M. Gruber, G. Jakopic, G. Trimmel, W. Kern, Macromol. Chem. Phys. 209, 488–498 (2008) CrossRefGoogle Scholar
  19. 19.
    T. Griesser, T. Höfler, S. Temmel, W. Kern, G. Trimmel, Chem. Mater. 19, 3011–3017 (2007) CrossRefGoogle Scholar
  20. 20.
    T. Höfler, T. Grießer, X. Gstrein, G. Trimmel, G. Jakopic, W. Kern, Polymer 48, 1930–1939 (2007) CrossRefGoogle Scholar
  21. 21.
    T. Griesser, J. Kuhlmann, M. Wieser, W. Kern, G. Trimmel, Macromolecules 42, 725–731 (2009) CrossRefGoogle Scholar
  22. 22.
    H.G. Unger, Planar Optical Waveguides and Fibres (Clarendon, Oxford, 1993) Google Scholar
  23. 23.
    R.A. Lessard, R. Changkakoti, G. Manivannan, Processes in Photoreactive Polymers (New York, 1995), pp. 305–367 Google Scholar
  24. 24.
    T.D. Milster, Y. Zhang, Mater. Res. Soc. Bull. 31, 318–323 (2006) CrossRefGoogle Scholar
  25. 25.
    R.S. Moshrefzadeh, D.K. Misemer, M.D. Radcliffe, C.V. Francis, S.K. Mohapatra, Appl. Phys. Lett. 62, 16 (1993) CrossRefGoogle Scholar
  26. 26.
    A. Natansohn, P. Rochon, C. Barrett, A. Hay, Chem. Mater. 7, 1612–1615 (1995) CrossRefGoogle Scholar
  27. 27.
    H.J. Coufal, D. Psaltis, G.T. Sincerbox, A.M. Glass, M.J. Cardillo, Springer Ser. Opt. Sci., vol. 76 (2000) Google Scholar
  28. 28.
    I. Assaid, D. Bosc, I. Hardy, J. Phys. Chem. B 108, 2801–2806 (2004) CrossRefGoogle Scholar
  29. 29.
    M. Shirai, W. Ma, M. Tsunooka, Eur. Polym. J. 29, 913–918 (1993) CrossRefGoogle Scholar
  30. 30.
    D. Stifter, H. Sitter, Appl. Phys. Lett. 66, 679 (1995) CrossRefGoogle Scholar
  31. 31.
    A. Andreev, G. Matt, C.J. Brabec, H. Sitter, D. Badt, H. Seyringer, N.S. Sariciftci, Adv. Mater. 12, 629–633 (2000) CrossRefGoogle Scholar
  32. 32.
    A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986) CrossRefGoogle Scholar
  33. 33.
    T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. USA 101, 9966–9970 (2004) CrossRefGoogle Scholar
  34. 34.
    B. Crone, A. Dodabalapur, Y.Y. Lin, R.W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H.E. Katz, W. Li, Nature 403, 521–523 (2000) CrossRefGoogle Scholar
  35. 35.
    S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, Y. Iwasa, Nat. Mater. 3, 317–322 (2004) CrossRefGoogle Scholar
  36. 36.
    A. Salleo, M.L. Chabinyc, M.S. Yang, R.A. Street, Appl. Phys. Lett. 81, 4383 (2002) CrossRefGoogle Scholar
  37. 37.
    B.H. Hamadani, D.A. Corley, J.W. Ciszek, J.M. Tour, D. Natelson, Nano Lett. 6, 1303–1306 (2006) CrossRefGoogle Scholar
  38. 38.
    L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature 434, 194–199 (2005) CrossRefGoogle Scholar
  39. 39.
    H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature 445, 745–748 (2007) CrossRefGoogle Scholar
  40. 40.
    C. Huang, H.E. Katz, J.E. West, Langmuir 23, 13223–13231 (2007) CrossRefGoogle Scholar
  41. 41.
    G. Horowitz, Adv. Mater. 10, 365–377 (1998) CrossRefGoogle Scholar
  42. 42.
    M. Marchl, A.W. Golubkov, M. Edler, T. Griesser, P. Pacher, A. Haase, B. Stadlober, M.R. Belegratis, G. Trimmel, E. Zojer, Appl. Phys. Lett. 96, 213303 (2010) CrossRefGoogle Scholar
  43. 43.
    Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett. 86, 263501 (2005) CrossRefGoogle Scholar
  44. 44.
    S.D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, K. Tsukagoshi, Appl. Phys. Lett. 93, 043311 (2008) CrossRefGoogle Scholar
  45. 45.
    A. Wang, I. Kymissis, V. Bulović, A.I. Akinwande, in Electron Devices Meeting, (IEEE Press, New York, 2004), pp. 381–384 Google Scholar
  46. 46.
    A. Wang, I. Kymissis, V. Bulović, A.I. Akinwande, Appl. Phys. Lett. 89, 112109 (2006) CrossRefGoogle Scholar
  47. 47.
    H. Sakai, K. Konno, H. Murata, Appl. Phys. Lett. 94, 073304 (2009) CrossRefGoogle Scholar
  48. 48.
    P. Pacher, A. Lex, V. Proschek, H. Etschmaier, E. Tchernychova, M. Sezen, U. Scherf, W. Grogger, G. Trimmel, C. Slugovc, E. Zojer, Adv. Mater. 20, 3143–3148 (2008) CrossRefGoogle Scholar
  49. 49.
    S.K. Possanner, K. Zojer, P. Pacher, E. Zojer, F. Schürrer, Adv. Funct. Mater. 19, 958–967 (2009) CrossRefGoogle Scholar
  50. 50.
    K. Müllen, U. Scherf, Organic Light Emitting Devices (Wiley/VCH, Weinheim, 2005) CrossRefGoogle Scholar
  51. 51.
    E.J. Cho, F.V. Bright, Anal. Chem. 73, 3289–3293 (2001) CrossRefGoogle Scholar
  52. 52.
    Z. Chen, Z. Zhang, T. Zhao, F. Bai, Y. Zhang, Z. Wang, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 57, 419–422 (2001) CrossRefGoogle Scholar
  53. 53.
    T. Griesser, T. Rath, H. Stecher, R. Saf, W. Kern, G. Trimmel, Chem. Mon. 138, 269–276 (2007) CrossRefGoogle Scholar
  54. 54.
    G. Weiquiang, D.J. Abdallah, R.G. Weiss, J. Photochem. Photobiol. A, Chem. 139, 79–87 (2001) CrossRefGoogle Scholar
  55. 55.
    M. Montague, R.E. Ducker, K.S.L. Chong, R.J. Manning, F.J.M. Rutten, M.C. Davies, G.J. Leggett, Langmuir 23, 7328–7337 (2007) CrossRefGoogle Scholar
  56. 56.
    S. Flink, F.C.J.M. van Veggel, D.N. Reinhoudt, J. Phys. Org. Chem. 14, 407–415 (2001) CrossRefGoogle Scholar
  57. 57.
    T. Höfler, A.M. Track, P. Pacher, Q. Shen, H.G. Flesch, G. Hlawacek, G. Koller, M.G. Ramsey, R. Schennach, R. Resel, Mater. Chem. Phys. 119, 287–293 (2010) CrossRefGoogle Scholar
  58. 58.
    T. Griesser, J. Adams, J. Wappel, W. Kern, G.J. Leggett, G. Trimmel, Langmuir 24, 12420–12425 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthias Edler
    • 1
  • Thomas Griesser
    • 1
  • Gregor Trimmel
    • 2
  • Wolfgang Kern
    • 1
  1. 1.Chair of Chemistry of Polymeric MaterialsUniversity of LeobenLeobenAustria
  2. 2.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria

Personalised recommendations