Advertisement

Multi-Gas Sensor by Infrared Spectrometer

  • Tetsuya Enomoto
  • Tomoki Tanemura
  • Shuichi Yamashita
  • Hiroyuki Wado
  • Yukihiro Takeuchi
  • Yutaka Hattori
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 194)

Abstract

In order to detect many types of gases (CO2, NOx, SOx, C2H5OH) in the automotive cabin by infrared absorption sensor, we developed a novel micro electro mechanical systems (MEMS) based Fabry–Perot spectrometer with an ultra wide wavelength range (3.20–8.40 μm) compared to previously reported spectrometers (typically 2.80–5.80 μm). The wavelength range of a Fabry–Perot spectrometer is known to increase by increasing the ratio of the refractive indices of the multilayer mirrors. Thus, a novel mirror structure was proposed replacing the low refractive index layer of SiO2 (nL = 1.44) with “air (nL = 1.00)” for a wider wavelength range. To fabricate the proposed structure, the internal stress of the four ultra-thin polycrystalline silicon films (ca. 320 nm) was controlled tensile by the deposition temperature. A gas sensor was fabricated using our developed spectrometer. It was found that the sensor detected CO2 and C2H5OH successfully.

Keywords

Infrared absorption sensor Gas sensor Fabry–Perot spectrometer MEMS 

References

  1. 1.
    Chang SC (1979) Thin-film semiconductor NOx senor. IEEE Tran Elect 26(12):1875CrossRefGoogle Scholar
  2. 2.
    Meléndez J, de Castro AJ, López F, Meneses J (1995) Spectrally selective gas cell for electrooptical infrared compact multigas sensor. Sens Actuators A 47(1–3):417–421Google Scholar
  3. 3.
    Norbert N, et al. (2005) Micromachined mid-infrared tunable Fabry-Porot filter. Transducers’05 2E4: 139Google Scholar
  4. 4.
    Kentaro S et al (2003) Wide wavelength range tunable Fabry-Perot filter for gas measurement. IEEJ Trans Sens Micromach 123(10):392–397CrossRefGoogle Scholar
  5. 5.
    Blomberg M et al (1997) Electrically tunable micromachined fabry-perot infermeter in gas analysis. Physica Scripta T69:119–121CrossRefGoogle Scholar
  6. 6.
    Norbert N, et al. (2003) Tunable Fabry-Perot-interferometer for 3–5 μm wavelength with bulk micromachined reflector carrier. In: MOEMS and miniaturized systems III, proceedings, Vol 4983. p 215–226Google Scholar
  7. 7.
    Elwenspoek M, Jansen HV (2004). In: Elwenspoek M, Jansen HV (eds) Silicon micromachining. Cambridge University Press, Cambridge, pp 419. ISBN 0521607671Google Scholar
  8. 8.
    Jafri I, Busta H, Walsh S (1999) Critical point drying and cleaning for MEMS technology. In: Conference on MEMS reliability for critical and space applications, Sep 21–22, p 51–58Google Scholar
  9. 9.
    Lee Y et al (1997) Dry release for surface micromachining with HF vapor-phase etching. J Microelectromech Syst 6:226–233CrossRefGoogle Scholar
  10. 10.
    Heavens OS (1955) Optical properties of thin solid films. Butterworth Scientific Publications, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tetsuya Enomoto
    • 1
  • Tomoki Tanemura
    • 1
  • Shuichi Yamashita
    • 1
  • Hiroyuki Wado
    • 1
  • Yukihiro Takeuchi
    • 1
  • Yutaka Hattori
    • 1
  1. 1.DENSO CorporationKariyaJapan

Personalised recommendations