Abstract
The aim of this paper is to automatically identify a Roman Imperial denarius from a single query photograph of its obverse and reverse. Such functionality has the potential to contribute greatly to various national schemes which encourage laymen to report their finds to local museums. Our work introduces a series of novelties: (i) this is the first paper which describes a method for extracting the legend of an ancient coin from a photograph; (ii) we are also the first to suggest the idea and propose a method for identifying a coin using a series of carefully engineered retrievals, each harnessed for further information using visual or meta-data processing; (iii) we show how in addition to a unique standard reference number for a query coin, the proposed system can be used to extract salient coin information (issuing authority, obverse and reverse descriptions, mint date) and retrieve images of other coins of the same type.
Keywords
- Recognition
- Text
- Image
- Reverse
- Motif
- Inscription
Download conference paper PDF
References
Webb, P.H. (vol. I), Mattingly, H., Sydenham, A., Sutherland, C.H.V. (vol. II-III), Sutherland, C.H.V., Carson, R.A.G. (vol. VI-IX), Carson, R.A.G., Kent, J.P.C., Burnett, A.M. (vol. X) (eds.): Roman Imperial Coinage, vol. I–X. Spink, London (1923-1994)
The portable antiquities scheme, http://finds.org.uk/ (last accessed July 2012)
Davidsson, P.: Coin classification using a novel technique for learning characteristic decision trees by controlling the degree of generalization. In: Proc. IEA/AIE, pp. 403–412 (1996)
Mitsukura, Y., Fukumi, M., Akamatsu, N.: Design and evaluation of neural networks for coin recognition by using GA and SA. In: Proc. IJCNN, vol. 5, pp. 178–183 (2000)
Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M.: Classification of coins using an eigenspace approach. Pattern Recognition Letters 26(1), 61–75 (2005)
van der Maaten, L., Boon, P.: COIN-O-MATIC: A fast system for reliable coin classification. In: Proc. MUSCLE CIS Coin Recognition Competition Workshop, pp. 7–18 (2006)
Zaharieva, M., Kampel, M., Zambanini, S.: Image Based Recognition of Ancient Coins. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 547–554. Springer, Heidelberg (2007)
Kampel, M., Zaharieva, M.: Recognizing Ancient Coins Based on Local Features. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 11–22. Springer, Heidelberg (2008)
Arandjelović, O.: Automatic attribution of ancient Roman imperial coins. In: Proc. CVPR, pp. 1728–1734 (2010)
WildWinds graphical partial legend search engine, http://www.wildwinds.com/coins/findstr.html (last accessed July 2012)
Ancient coins search engine, http://www.acsearch.info/ (last accessed July 2012)
Dalai, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, vol. 1, pp. 886–893 (2005)
Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61(3), 611–622 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arandjelović, O. (2012). Reading Ancient Coins: Automatically Identifying Denarii Using Obverse Legend Seeded Retrieval. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33765-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-33765-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33764-2
Online ISBN: 978-3-642-33765-9
eBook Packages: Computer ScienceComputer Science (R0)