Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

European Conference on Computer Vision

ECCV 2012: Computer Vision – ECCV 2012 pp 317–330Cite as

  1. Home
  2. Computer Vision – ECCV 2012
  3. Conference paper
Reading Ancient Coins: Automatically Identifying Denarii Using Obverse Legend Seeded Retrieval

Reading Ancient Coins: Automatically Identifying Denarii Using Obverse Legend Seeded Retrieval

  • Ognjen Arandjelović21 
  • Conference paper
  • 8695 Accesses

  • 19 Citations

  • 7 Altmetric

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7575)

Abstract

The aim of this paper is to automatically identify a Roman Imperial denarius from a single query photograph of its obverse and reverse. Such functionality has the potential to contribute greatly to various national schemes which encourage laymen to report their finds to local museums. Our work introduces a series of novelties: (i) this is the first paper which describes a method for extracting the legend of an ancient coin from a photograph; (ii) we are also the first to suggest the idea and propose a method for identifying a coin using a series of carefully engineered retrievals, each harnessed for further information using visual or meta-data processing; (iii) we show how in addition to a unique standard reference number for a query coin, the proposed system can be used to extract salient coin information (issuing authority, obverse and reverse descriptions, mint date) and retrieve images of other coins of the same type.

Keywords

  • Recognition
  • Text
  • Image
  • Reverse
  • Motif
  • Inscription

Download conference paper PDF

References

  1. Webb, P.H. (vol. I), Mattingly, H., Sydenham, A., Sutherland, C.H.V. (vol. II-III), Sutherland, C.H.V., Carson, R.A.G. (vol. VI-IX), Carson, R.A.G., Kent, J.P.C., Burnett, A.M. (vol. X) (eds.): Roman Imperial Coinage, vol. I–X. Spink, London (1923-1994)

    Google Scholar 

  2. The portable antiquities scheme, http://finds.org.uk/ (last accessed July 2012)

  3. Davidsson, P.: Coin classification using a novel technique for learning characteristic decision trees by controlling the degree of generalization. In: Proc. IEA/AIE, pp. 403–412 (1996)

    Google Scholar 

  4. Mitsukura, Y., Fukumi, M., Akamatsu, N.: Design and evaluation of neural networks for coin recognition by using GA and SA. In: Proc. IJCNN, vol. 5, pp. 178–183 (2000)

    Google Scholar 

  5. Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M.: Classification of coins using an eigenspace approach. Pattern Recognition Letters 26(1), 61–75 (2005)

    CrossRef  Google Scholar 

  6. van der Maaten, L., Boon, P.: COIN-O-MATIC: A fast system for reliable coin classification. In: Proc. MUSCLE CIS Coin Recognition Competition Workshop, pp. 7–18 (2006)

    Google Scholar 

  7. Zaharieva, M., Kampel, M., Zambanini, S.: Image Based Recognition of Ancient Coins. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 547–554. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  8. Kampel, M., Zaharieva, M.: Recognizing Ancient Coins Based on Local Features. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 11–22. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  9. Arandjelović, O.: Automatic attribution of ancient Roman imperial coins. In: Proc. CVPR, pp. 1728–1734 (2010)

    Google Scholar 

  10. WildWinds graphical partial legend search engine, http://www.wildwinds.com/coins/findstr.html (last accessed July 2012)

  11. Ancient coins search engine, http://www.acsearch.info/ (last accessed July 2012)

  12. Dalai, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  13. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61(3), 611–622 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Swansea University, Wales, UK

    Ognjen Arandjelović

Authors
  1. Ognjen Arandjelović
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Microsoft Research Ltd., CB3 0FB, Cambridge, UK

    Andrew Fitzgibbon

  2. Dept. of Computer Science, University of North Carolina, 27599, Chapel Hill, NC, USA

    Svetlana Lazebnik

  3. California Institute of Technology, 91125, Pasadena, CA, USA

    Pietro Perona

  4. Institute of Industrial Science, The University of Tokyo, 153-8505, Tokyo, Japan

    Yoichi Sato

  5. INRIA, 38330, Montbonnot, France

    Cordelia Schmid

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arandjelović, O. (2012). Reading Ancient Coins: Automatically Identifying Denarii Using Obverse Legend Seeded Retrieval. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33765-9_23

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-33765-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33764-2

  • Online ISBN: 978-3-642-33765-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.239.173.144

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.