Skip to main content

Genetic Variation Within Serotonin Genes, Hormones, and Aggression

  • Chapter
  • First Online:
Multiple Origins of Sex Differences in Brain

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

  • 1371 Accesses

Abstract

Inter-individual differences in aggressive behavior and related mental illnesses have important genetic as well as environmental underpinnings. Twin and adoption studies have shown that genetic factors contribute to approximately 50 % of vulnerability to aggression. Across-species aggressive behavior is more common in males than females, reflecting the different evolutionary roles of the two genders and pointing to the different effects on brain and behavior of the neuro-endocrinological process involved in sex differentiation. Indeed, a correlation between testosterone levels and aggression has been reported in studies on humans and other species. Multiple pieces of evidence support the role of genetic variation within genes belonging to the serotonin system, such as monoamine oxidase A (MAOA), HTR1B, HTR3B, SLC6A4, and HTR2B, in determining vulnerability to aggression. Recent studies also indicate the existence of a complex interaction between genes, hormones, and stress. MAOA is an X-linked gene encoding the monoamine oxidase A, a mitochondrial enzyme that metabolizes monoamine neurotransmitters including norepinephrine, dopamine, and serotonin. MAOA knockout mice have higher levels of these neurotransmitters and manifest increased aggressive behavior and stress reactivity. In humans, a rare stop codon variant leading to a complete MAOA deficiency has been reported in a single Dutch family in which eight males were affected by a syndrome characterized by borderline mental retardation and severe aggressive behavior. More recently, a common polymorphism influencing MAOA transcription (MAOA–LPR) has been found in the human MAOA promoter. At this locus, the allele associated with low MAOA activity (e.g., increased monoamines level) has been associated with increased risk of developing Conduct Disorder and Antisocial Personality Disorder among subjects exposed to severe childhood trauma. In addition, a powerful MAOA-LPR × endocrine interaction has been described in a sample of Finnish male violent offenders. In this study, a strong correlation between testosterone and aggressive behavior was found only among carriers of the low MAOA activity allele. More recently, a rare stop codon variant (Q20*) within the HTR2B serotonin receptor gene has been associated with psychiatric diseases marked by severe impulsivity and aggression. Similar to what has been observed for MAOA, the impact of Q20* was not in itself sufficient in determining aggressive behavior, but male sex, testosterone level, and exposure to alcohol had important roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alia-Klein N, Goldstein RZ, Tomasi D, Woicik PA, Moeller SJ, Williams B, Craig IW, Telang F, Biegon A, Wang GJ, Fowler JS, Volkow ND (2009) Neural mechanisms of anger regulation as a function of genetic risk for violence. Emotion 9:385–396

    Article  PubMed  Google Scholar 

  • Arai Y, Kinemuchi H, Hamamichi N, Satoh N, Tadano T, Kisara K (1986) Inhibition of rat brain monoamine oxidase by some analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion. Neurosci Lett 66:43–48

    Article  PubMed  CAS  Google Scholar 

  • Arai R, Kimura H, Nagatsu I, Maeda T (1997) Preferential localization of monoamine oxidase type A activity in neurons of the locus coeruleus and type B activity in neurons of the dorsal raphe nucleus of the rat: a detailed enzyme histochemical study. Brain Res 745:352–356

    Article  PubMed  CAS  Google Scholar 

  • Archer J (1988) The behavioural biology of aggression. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Banas SM, Doly S, Boutourlinsky K, Diaz SL, Belmer A, Callebert J, Collet C, Launay JM, Maroteaux L (2011) Deconstructing antiobesity compound action: requirement of serotonin 5-HT2B receptors for dexfenfluramine anorectic effects. Neuropsychopharmacology 36:423–433

    Article  PubMed  CAS  Google Scholar 

  • Barr CS (2011) Non-human primate models of alcohol-related phenotypes: the influence of genetic and environmental factors. Curr Top Behav Neurosci. doi:10.1007/7854_2011_142

    Google Scholar 

  • Barratt ES, Felthous AR (2003) Impulsive versus premeditated aggression: implications for mens rea decisions. Behav Sci Law 21:619–630

    Article  PubMed  Google Scholar 

  • Beeman AE (1947a) The effect of male hormone on aggressive behavior in mice. Physiol Zool 20:373–405

    PubMed  CAS  Google Scholar 

  • Beeman EA (1947b) The relation of the interval between castration and first encounter to the aggressive behavior of mice. Anat Rec 99:570

    PubMed  CAS  Google Scholar 

  • Berman M, Gladue B, Taylor S (1993) The effects of hormones. Type A behavior pattern, and provocation on aggression in men. Motiv Emotion 17:125–138

    Article  Google Scholar 

  • Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T, Zhou Z, Wedenoja J, Maroteaux L, Diaz S, Belmer A, Hodgkinson CA, Dell’osso L, Suvisaari J, Coccaro E, Rose RJ, Peltonen L, Virkkunen M, Goldman D (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Birger M, Swartz M, Cohen D, Alesh Y, Grishpan C, Kotelr M (2003) Aggression: the testosterone-serotonin link. Isr Med Assoc J 5:653–658

    PubMed  CAS  Google Scholar 

  • Bonaventure P, Guo H, Tian B, Liu X, Bittner A, Roland B, Salunga R, Ma XJ, Kamme F, Meurers B, Bakker M, Jurzak M, Leysen JE, Erlander MG (2002) Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res 943:38–47

    Article  PubMed  CAS  Google Scholar 

  • Book AS, Starzyk KB, Quinsey VL (2001) The relationship between testosterone and aggression: a meta-analysis. Aggress Violent Behav 6:579–599

    Article  Google Scholar 

  • Bubar MJ, Cunningham KA (2006) Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr Top Med Chem 6:1971–1985

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  PubMed  CAS  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC, De Maeyer E (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Maroteaux L (1996) Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391:45–51

    Article  PubMed  CAS  Google Scholar 

  • Coccaro EF, Beresford B, Minar P, Kaskow J, Geracioti T (2007) CSF testosterone: relationship to aggression, impulsivity, and venturesomeness in adult males with personality disorder. J Psychiatr Res 41:488–492

    Article  PubMed  Google Scholar 

  • Compton WM, Conway KP, Stinson FS, Colliver JD, Grant BF (2005) Prevalence, correlates, and comorbidity of DSM-IV antisocial personality syndromes and alcohol and specific drug use disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. J Clin Psychiat 66:677–685

    Article  Google Scholar 

  • De Vry J, Schreiber R (2000) Effects of selected serotonin 5-HT(1) and 5-HT(2) receptor agonists on feeding behavior: possible mechanisms of action. Neurosci Biobehav Rev 24:341–353

    Article  PubMed  Google Scholar 

  • Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D, Nothen MM, Maffei P, Franke P, Fritze J, Maier W, Propping P, Beckmann H, Bellodi L, Lesch KP (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8:621–624

    Article  PubMed  CAS  Google Scholar 

  • Diaz SL, Maroteaux L (2011) Implication of 5-HT(2B) receptors in the serotonin syndrome. Neuropharmacology 61:495–502

    Article  PubMed  CAS  Google Scholar 

  • Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM, Maroteaux L (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28:2933–2940

    Article  PubMed  CAS  Google Scholar 

  • Ducci F, Enoch MA, Hodgkinson C, Xu K, Catena M, Robin RW, Goldman D (2008) Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Mol Psychiat 13:334–347

    Article  CAS  Google Scholar 

  • Ducci F, Enoch MA, Yuan Q, Shen PH, White KV, Hodgkinson C, Albaugh B, Virkkunen M, Goldman D (2009) HTR3B is associated with alcoholism with antisocial behavior and alpha EEG power–an intermediate phenotype for alcoholism and co-morbid behaviors. Alcohol 43:73–84

    Article  PubMed  CAS  Google Scholar 

  • Eley TC, Sugden K, Corsico A, Gregory AM, Sham P, McGuffin P, Plomin R, Craig IW (2004) Gene-environment interaction analysis of serotonin system markers with adolescent depression. Mol Psychiat 9:908–915

    Article  CAS  Google Scholar 

  • Fazel S, Danesh J (2002) Serious mental disorder in 23000 prisoners: a systematic review of 62 surveys. Lancet 359:545–550

    Article  PubMed  Google Scholar 

  • Fowler CJ, Oreland L (1981) Substrate- and stereoselective inhibitor of human brain monoamine oxidase by 4-dimethylamino-alpha, 2-dimethylphenethylamine (FLA 336). J Pharm Pharmacol 33:403–406

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Gleason ED, Fuxjager MJ, Oyegbile TO, Marler CA (2009) Testosterone release and social context: when it occurs and why. Front Neuroendocrinol 30:460–469

    Article  PubMed  CAS  Google Scholar 

  • Godar SC, Bortolato M, Frau R, Dousti M, Chen K, Shih JC (2011) Maladaptive defensive behaviours in monoamine oxidase A-deficient mice. Int J Neuropsychopharmacol 14(9):1195 –1207

    Google Scholar 

  • Grant BF, Chou SP, Goldstein RB, Huang B, Stinson FS, Saha TD, Smith SM, Dawson DA, Pulay AJ, Pickering RP, Ruan WJ (2008) Prevalence, correlates, disability, and comorbidity of DSM-IV borderline personality disorder: results from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiat 69:533–545

    Article  Google Scholar 

  • Grimsby J, Chen K, Wang LJ, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci USA 88:3637–3641

    Article  PubMed  CAS  Google Scholar 

  • Gunther S, Maroteaux L, Schwarzacher SW (2006) Endogenous 5-HT2B receptor activation regulates neonatal respiratory activity in vitro. J Neurobiol 66:949–961

    Article  PubMed  Google Scholar 

  • Gustavsson G, Traskman-Bendz L, Higley JD, Westrin A (2003) CSF testosterone in 43 male suicide attempters. Eur Neuropsychopharmacol 13:105–109

    Article  PubMed  CAS  Google Scholar 

  • Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A (2011) Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12:400–413

    Article  PubMed  CAS  Google Scholar 

  • Hermans EJ, Ramsey NF, van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiat 63:263–270

    Article  PubMed  CAS  Google Scholar 

  • Huang YY, Cate SP, Battistuzzi C, Oquendo MA, Brent D, Mann JJ (2004) An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29:1498–1505

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Trail B, Bright F (1998) Anxiolytic-like actions of BW 723C86 in the rat Vogel conflict test are 5-HT2B receptor mediated. Neuropharmacology 37:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Coccaro EF, Fava M, Jaeger S, Jin R, Walters E (2006) The prevalence and correlates of DSM-IV intermittent explosive disorder in the national comorbidity survey replication. Arch Gen Psychiat 63:669–678

    Article  PubMed  Google Scholar 

  • Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913

    Article  PubMed  CAS  Google Scholar 

  • Kinnally EL, Huang YY, Haverly R, Burke AK, Galfalvy H, Brent DP, Oquendo MA, Mann JJ (2009) Parental care moderates the influence of MAOA-uVNTR genotype and childhood stressors on trait impulsivity and aggression in adult women. Psychiatr Genet 19:126–133

    Article  PubMed  Google Scholar 

  • Kouri EM, Lukas SE, Pope HG Jr, Oliva PS (1995) Increased aggressive responding in male volunteers following the administration of gradually increasing doses of testosterone cypionate. Drug Alcohol Depend 40:73–79

    Article  PubMed  CAS  Google Scholar 

  • Krakowski MI, Czobor P, Citrome L, Bark N, Cooper TB (2006) Atypical antipsychotic agents in the treatment of violent patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry 63:622–629

    Article  PubMed  CAS  Google Scholar 

  • Lakshmana MK, Rao BS, Dhingra NK, Ravikumar R, Govindaiah SS, Meti BL, Raju TR (1998) Role of monoamine oxidase type A and B on the dopamine metabolism in discrete regions of the primate brain. Neurochem Res 23:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL, Naukkarinen H, Virkkunen M, Linnoila M, Goldman D (1998) Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiat 55:989–994

    Article  PubMed  CAS  Google Scholar 

  • Launay JM, Schneider B, Loric S, Da Prada M, Kellermann O (2006) Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J 20:1843–1854

    Article  PubMed  CAS  Google Scholar 

  • Mazur A (1985) A biosocial model of status in face-to-face primate groups. Soc Forces 64:377–402

    Google Scholar 

  • Mehta PH, Beer J (2010) Neural mechanisms of the testosterone-aggression relation: the role of orbitofrontal cortex. J Cogn Neurosci 22:2357–2368

    Article  PubMed  Google Scholar 

  • Mendes DD, Mari Jde J, Singer M, Barros GM, Mello AF (2009) Study review of biological, social and environmental factors associated with aggressive behavior. Rev Bras Psiquiatr 31(Suppl 2):S77–S85

    PubMed  Google Scholar 

  • Meyer-Lindenberg A, Buckholtz JW, Kolachana B, RH A, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274

    Article  PubMed  CAS  Google Scholar 

  • Mickey BJ, Ducci F, Hodgkinson CA, Langenecker SA, Goldman D, Zubieta JK (2008) Monoamine oxidase A genotype predicts human serotonin 1A receptor availability in vivo. J Neurosci 28:11354–11359

    Article  PubMed  CAS  Google Scholar 

  • Miles DR, Carey G (1997) Genetic and environmental architecture of human aggression. J Pers Soc Psychol 72:207–217

    Article  PubMed  CAS  Google Scholar 

  • Newman TK, Syagailo YV, Barr CS, Wendland JR, Champoux M, Graessle M, Suomi SJ, Higley JD, Lesch KP (2005) Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biol Psychiat 57:167–172

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RF (2009) Social behavior in context: hormonal modulation of behavioral plasticity and social competence. Integr Comp Biol 49:423–440

    Article  PubMed  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006) Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J Biol Chem 281:21512–21525

    Article  PubMed  CAS  Google Scholar 

  • Popa D, Lena C, Fabre V, Prenat C, Gingrich J, Escourrou P, Hamon M, Adrien J (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25:11231–11238

    Article  PubMed  CAS  Google Scholar 

  • Pope HG Jr, Kouri EM, Hudson JI (2000) Effects of supraphysiologic doses of testosterone on mood and aggression in normal men: a randomized controlled trial. Arch Gen Psychiat 57:133–140, discussion 155–136

    Article  PubMed  CAS  Google Scholar 

  • Raine A, Dodge K, Loeber R, Gatzke-Kopp L, Lynam D, Reynolds C, Stouthamer-Loeber M, Liu J (2006) The reactive-proactive aggression questionnaire: differential correlates of reactive and proactive aggression in adolescent boys. Aggress Behav 32:159–171

    Article  PubMed  Google Scholar 

  • Rhee SH, Waldman ID (2002) Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull 128:490–529

    Article  PubMed  Google Scholar 

  • Rodriguez CM, Tucker MC (2011) Behind the cycle of violence, beyond abuse history: a brief report on the association of parental attachment to physical child abuse potential. Violence Vict 26:246–256

    Article  PubMed  Google Scholar 

  • Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279

    Article  PubMed  CAS  Google Scholar 

  • Salomon RM, Mazure CM, Delgado PL, Mendia P, Charney DS (1994) Serotonin function in aggression: the effect of acute plasma tryptophan depletion in aggressive patients. Biol Psychiat 35:570–572

    Article  PubMed  CAS  Google Scholar 

  • Schmuck K, Ullmer C, Kalkman HO, Probst A, Lubbert H (1996) Activation of meningeal 5-HT2B receptors: an early step in the generation of migraine headache? Eur J Neurosci 8:959–967

    Article  PubMed  CAS  Google Scholar 

  • Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiat 165:429–442

    Article  PubMed  Google Scholar 

  • Sjoberg RL, Nilsson KW, Wargelius HL, Leppert J, Lindstrom L, Oreland L (2007) Adolescent girls and criminal activity: role of MAOA-LPR genotype and psychosocial factors. Am J Med Genet B Neuropsychiatr Genet 144B:159–164

    Article  PubMed  Google Scholar 

  • Sjoberg RL, Ducci F, Barr CS, Newman TK, Dell’osso L, Virkkunen M, Goldman D (2008) A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology 33:425–430

    Article  PubMed  Google Scholar 

  • Stenstrom A, Hardy J, Oreland L (1987) Intra- and extra-dopamine-synaptosomal localization of monoamine oxidase in striatal homogenates from four species. Biochem Pharmacol 36:2931–2935

    Article  PubMed  CAS  Google Scholar 

  • Sugden K, Arseneault L, Harrington H, Moffitt TE, Williams B, Caspi A (2010) Serotonin transporter gene moderates the development of emotional problems among children following bullying victimization. J Am Acad Child Adolesc Psychiat 49:830–840

    Article  Google Scholar 

  • Takahashi A, Quadros IM, de Almeida RM, Miczek KA (2011) Brain serotonin receptors and transporters: initiation versus termination of escalated aggression. Psychopharmacology (Berl) 213:183–212

    Article  CAS  Google Scholar 

  • Thorpe LW, Westlund KN, Kochersperger LM, Abell CW, Denney RM (1987) Immunocytochemical localization of monoamine oxidases A and B in human peripheral tissues and brain. J Histochem Cytochem 35:23–32

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen R, Sjoberg RL, Ducci F, Goldman D, Holi M, Tiihonen J, Virkkunen M (2009) Effects of MAOA-genotype, alcohol consumption, and aging on violent behavior. Alcohol Clin Exp Res 33:428–434

    Article  PubMed  Google Scholar 

  • Tikkanen R, Ducci F, Goldman D, Holi M, Lindberg N, Tiihonen J, Virkkunen M (2010) MAOA alters the effects of heavy drinking and childhood physical abuse on risk for severe impulsive acts of violence among alcoholic violent offenders. Alcohol Clin Exp Res 34:853–860

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen R, Auvinen-Lintunen L, Ducci F, Sjoberg RL, Goldman D, Tiihonen J, Ojansuu I, Virkkunen M (2011) Psychopathy, PCL-R, and MAOA genotype as predictors of violent reconvictions. Psychiat Res 185:382–386

    Article  CAS  Google Scholar 

  • Tuvblad C, Raine A, Zheng M, Baker LA (2009) Genetic and environmental stability differs in reactive and proactive aggression. Aggress Behav 35:437–452

    Article  PubMed  Google Scholar 

  • van Wingen GA, Zylicz SA, Pieters S, Mattern C, Verkes RJ, Buitelaar JK, Fernandez G (2009) Testosterone increases amygdala reactivity in middle-aged women to a young adulthood level. Neuropsychopharmacology 34:539–547

    Article  PubMed  Google Scholar 

  • Virkkunen M, Kallio E, Rawlings R, Tokola R, Poland RE, Guidotti A, Nemeroff C, Bissette G, Kalogeras K, Karonen SL, Linnoila M (1994) Personality profiles and state aggressiveness in Finnish alcoholic, violent offenders, fire setters, and healthy volunteers. Arch Gen Psychiat 51:28–33

    Article  PubMed  CAS  Google Scholar 

  • Volman I, Toni I, Verhagen L, Roelofs K (2011) Endogenous testosterone modulates prefrontal-amygdala connectivity during social emotional behavior. Cereb Cortex 21:2282–2290

    Article  PubMed  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25:439–456

    Article  PubMed  CAS  Google Scholar 

  • White HL, Glassman AT (1977) Multiple binding sites of human brain and liver monoamine oxidase: substrate specificities, selective inhibitions, and attempts to separate enzyme forms. J Neurochem 29:987–997

    Article  PubMed  CAS  Google Scholar 

  • Widom CS, Brzustowicz LM (2006) MAOA and the “cycle of violence”: childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiat 60:684–689

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AM Jr, Ball GF (1990) The ‘challenge hypothesis’: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136(6):829 –846

    Article  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW (2004) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl) 176:376–385

    Article  CAS  Google Scholar 

  • Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138:976–989

    Article  PubMed  CAS  Google Scholar 

  • Yates WR, Perry PJ, MacIndoe J, Holman T, Ellingrod V (1999) Psychosexual effects of three doses of testosterone cycling in normal men. Biol Psychiat 45:254–260

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Ducci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ducci, F., Bevilacqua, L., Landi, P., Goldman, D. (2013). Genetic Variation Within Serotonin Genes, Hormones, and Aggression. In: Pfaff, D., Christen, Y. (eds) Multiple Origins of Sex Differences in Brain. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33721-5_7

Download citation

Publish with us

Policies and ethics