Skip to main content

Efficient Misalignment-Robust Representation for Real-Time Face Recognition

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7572)

Abstract

Sparse representation techniques for robust face recognition have been widely studied in the past several years. Recently face recognition with simultaneous misalignment, occlusion and other variations has achieved interesting results via robust alignment by sparse representation (RASR). In RASR, the best alignment of a testing sample is sought subject by subject in the database. However, such an exhaustive search strategy can make the time complexity of RASR prohibitive in large-scale face databases. In this paper, we propose a novel scheme, namely misalignment robust representation (MRR), by representing the misaligned testing sample in the transformed face space spanned by all subjects. The MRR seeks the best alignment via a two-step optimization with a coarse-to-fine search strategy, which needs only two deformation-recovery operations. Extensive experiments on representative face databases show that MRR has almost the same accuracy as RASR in various face recognition and verification tasks but it runs tens to hundreds of times faster than RASR. The running time of MRR is less than 1 second in the large-scale Multi-PIE face database, demonstrating its great potential for real-time face recognition.

References

  1. Zhao, W., Chellppa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Survey 35, 399–458 (2003)

    CrossRef  Google Scholar 

  2. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report Technical Report 07-49, University of Massachusetts (2007)

    Google Scholar 

  3. Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: ICCV (2009)

    Google Scholar 

  4. Nowak, E., Jurie, F.: Learning visual similarity measures for comparing never seen objects. In: CVPR (2007)

    Google Scholar 

  5. Huang, G.B., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images. In: ICCV (2007)

    Google Scholar 

  6. Yin, Q., Tang, X.O., Sun, J.: An associate-predict model for face recognition. In: CVPR (2011)

    Google Scholar 

  7. Wagner, A., Wright, J., Ganesh, A., Zhou, Z.H., Mobahi, H., Ma, Y.: Towards a practical face recognition system: robust alignment and illumination by sparse representation. IEEE PAMI 34, 372–386 (2012)

    CrossRef  Google Scholar 

  8. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE PAMI 31, 210–227 (2009)

    CrossRef  Google Scholar 

  9. Elhamifar, E., Vidal, R.: Robust classification using structured sparse representation. In: CVPR (2011)

    Google Scholar 

  10. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: CVPR (2011)

    Google Scholar 

  11. Zhou, Z., Wagner, A., Mobahi, H., Wright, J., Ma, Y.: Face recognition with contiguous occlusion using markov random fields. In: ICCV (2009)

    Google Scholar 

  12. Huang, J.Z., Huang, X.L., Metaxas, D.: Simultaneous image transformation and sparse representation recovery. In: CVPR (2008)

    Google Scholar 

  13. Zhang, L., Yang, M., Feng, X.C.: Sparse representation or collaborative representation which helps face recognition? In: ICCV (2011)

    Google Scholar 

  14. Yan, S.C., Wang, H., Liu, J.Z., Tang, X.O., Huang, T.S.: Misalignment robust face recognition. IEEE IP 19, 1087–1096 (2010)

    MathSciNet  Google Scholar 

  15. Viola, P., Jones, M.J.: Robust real-time face detection. Int’l J. Computer Vision 57, 137–154 (2004)

    CrossRef  Google Scholar 

  16. Shan, S., Chang, Y., Gao, W., Cao, B., Yang, P.: Curse of mis-alignment in face recognition: problem and a novel mis-alignment learning solution. In: AFGR (2004)

    Google Scholar 

  17. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE PAMI 23, 681–685 (2001)

    CrossRef  Google Scholar 

  18. Cootes, T., Taylor, C.: Active shape models - ’smart snakes’. In: BMVC (1992)

    Google Scholar 

  19. Peng, Y.G., Ganesh, A., Wright, J., Xu, W.L., Ma, Y.: RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In: CVPR (2010)

    Google Scholar 

  20. Yang, A.Y., Ganesh, A., Zhou, Z.H., Sastry, S.S., Ma, Y.: Fast l 1-minimizaton algorithms and application in robust face recognition. Technical Report UCB/EECS-2010-13, UC Berkeley (2010)

    Google Scholar 

  21. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: A interior-point method for large-scale l 1-regularized least squares. IEEE Journal on Selected Topics in Signal Processing 1, 606–617 (2007)

    CrossRef  Google Scholar 

  22. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image and Vision Computing 28, 807–813 (2010)

    CrossRef  Google Scholar 

  23. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE PAMI 23, 643–660 (2001)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, M., Zhang, L., Zhang, D. (2012). Efficient Misalignment-Robust Representation for Real-Time Face Recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33718-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33718-5_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33717-8

  • Online ISBN: 978-3-642-33718-5

  • eBook Packages: Computer ScienceComputer Science (R0)