Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: CVPR (2005)
Google Scholar
Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Yang, J., Yu, K., Huang, T.: Efficient Highly Over-Complete Sparse Coding Using a Mixture Model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 113–126. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Li, F., Carreira, J., Sminchisescu, C.: Object recognition as ranking holistic figure-ground hypotheses. In: CVPR (2010)
Google Scholar
Song, Z., Chen, Q., Huang, Z., Hua, Y., Yan, S.: Contextualizing object detection and classification. In: CVPR (2011)
Google Scholar
Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. TPAMI (2008)
Google Scholar
Yuan, X., Yan, S.: Visual classification with multi-task joint sparse representation. In: CVPR (2010)
Google Scholar
Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition. IEEE (2010)
Google Scholar
Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)
Google Scholar
Liu, D., Yan, S., Rui, Y., Zhang, H.: Unified tag analysis with multi-edge graph. In: MM (2010)
Google Scholar
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J Roy. Stat. Soc. B Met. (1977)
Google Scholar
Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (gpca). TPAMI (2005)
Google Scholar
Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD (1999)
Google Scholar
Quadrianto, N., Caetano, T., Lim, J., Schuurmans, D.: Convex relaxation of mixture regression with efficient algorithms. In: NIPS (2009)
Google Scholar
Hocking, T., Vert, J., Bach, F., Joulin, A.: Clusterpath: an algorithm for clustering using convex fusion penalties. In: ICML (2011)
Google Scholar
Shen, X., Huang, H.: Grouping pursuit through a regularization solution surface. J Am. Stat. Assoc. (2010)
Google Scholar
Vert, J., Bleakley, K.: Fast detection of multiple change-points shared by many signals using group lars. In: NIPS (2010)
Google Scholar
Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. (2005)
Google Scholar
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS (2001)
Google Scholar
Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge Univ. Pr. (2004)
Google Scholar
Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the ℓ1-ball for learning in high dimensions. In: ICML (2008)
Google Scholar
Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. Submitted to SIAM J. Optimiz. (2008)
Google Scholar
Subramanya, A., Bilmes, J.: Entropic graph regularization in non-parametric semi-supervised classification. In: NIPS (2009)
Google Scholar
Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Tech. Rep. (2002)
Google Scholar
Yan, S., Wang, H.: Semi-supervised learning by sparse representation. In: SDM (2009)
Google Scholar
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. TPAMI (2007)
Google Scholar
Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from national university of singapore. In: CIVR (2009)
Google Scholar
Chen, X., Yuan, X., Chen, Q., Yan, S., Chua, T.: Multi-label visual classification with label exclusive context. In: ICCV (2011)
Google Scholar
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge Univ. Press (2000)
Google Scholar
Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPR (2007)
Google Scholar
Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM (1981)
Google Scholar
Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)
Google Scholar