Abstract
In this paper we define a new methodology for shape analysis of parameterized surfaces, where the main issues are: (1) choice of metric for shape comparisons and (2) invariance to reparameterization. We begin by defining a general elastic metric on the space of parameterized surfaces. The main advantages of this metric are twofold. First, it provides a natural interpretation of elastic shape deformations that are being quantified. Second, this metric is invariant under the action of the reparameterization group. We also introduce a novel representation of surfaces termed square root normal fields or SRNFs. This representation is convenient for shape analysis because, under this representation, a reduced version of the general elastic metric becomes the simple \(\ensuremath{\mathbb{L}^2}\) metric. Thus, this transformation greatly simplifies the implementation of our framework. We validate our approach using multiple shape analysis examples for quadrilateral and spherical surfaces. We also compare the current results with those of Kurtek et al. [1]. We show that the proposed method results in more natural shape matchings, and furthermore, has some theoretical advantages over previous methods.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download to read the full chapter text
Chapter PDF
References
Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: Proc. IEEE Computer Vision and Pattern Recognition, pp. 1625–1632 (2010)
Younes, L., Michor, P.W., Shah, J., Mumford, D., Lincei, R.: A metric on shape space with explicit geodesics. Matematica E Applicazioni 19, 25–57 (2008)
Srivastava, A., Klassen, E., Joshi, S., Jermyn, I.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Analysis and Machine Intelligence 33, 1415–1428 (2011)
Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics LVI, 617–694 (1998)
Dryden, I.L., Mardia, K.: Statistical Shape Analysis. John Wiley & Son (1998)
Malladi, R., Sethian, J., Vemuri, B.: A fast level set based algorithm for topology-independent shape modeling. Journal of Math. Imag. and Vision 6, 269–290 (1996)
Gu, X., Wang, S., Kim, J., Zeng, Y., Wang, Y., Qin, H., Samaras, D.: Ricci flow for 3D shape analysis. In: Proc. IEEE Int. Conf. on Computer Vision (2007)
Almhdie, A., Léger, C., Deriche, M., Lédée, R.: 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognition Letters 28, 1523–1533 (2007)
Bouix, S., Pruessner, J.C., Collins, D.L., Siddiqi, K.: Hippocampal shape analysis using medial surfaces. Neuroimage 25, 1077–1089 (2001)
Gorczowski, K., Styner, M., Jeong, J., Marron, J., Piven, J., Hazlett, H., Pizer, S., Gerig, G.: Multi-object analysis of volume, pose, and shape using statistical discrimination. IEEE Trans. Pattern Analysis and Machine Intelligence 32, 652–666 (2010)
Brechbühler, C., Gerig, G., Kübler, O.: Parameterization of closed surfaces for 3D shape description. Computer Vision and Image Understanding 61, 154–170 (1995)
Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. In: Proc. MICCAI Open Science Workshop (2006)
van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Eurographics State-of-the-Art Report (2010)
Cates, J., Meyer, M., Fletcher, P., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: Proc. MICCAI Mathematical Foundations of Computational Anatomy, pp. 90–99 (2006)
Davies, R., Twining, C., Cootes, T., Taylor, C.: Building 3-d statistical shape models by direct optimization. IEEE Trans. Medical Imaging 29, 961–981 (2010)
Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision 35, 86–102 (2009)
Windheuser, T., Schlickewei, U., Schmidt, F.R., Cremers, D.: Geometrically consistent elastic matching of 3d shapes: A linear programming solution. In: Proc. International Conference on Computer Vision, ICCV (2011)
Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. In: Proc. of SIGGRAPH (2006)
Kurtek, S., Klassen, E., Ding, Z., Jacobson, S., Jacobson, J., Avison, M., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans. Medical Imaging 30, 849–858 (2011)
Kurtek, S., Klassen, E., Gore, J., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parametrized surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence (2010)
Kurtek, S., Klassen, E., Ding, Z., Avison, M., Srivastava, A.: Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 147–158. Springer, Heidelberg (2011)
Gu, X., Vemuri, B.C.: Matching 3D Shapes Using 2D Conformal Representations. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 771–780. Springer, Heidelberg (2004)
DeWitt, B.S.: Quantum Theory of Gravity. I. The Canonical Theory. Physical Review 160, 1113–1148 (1967)
Clarke, B.: The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calculus of Variations and Partial Diff. Equations 39 (2010)
Abe, K., Erbacher, J.: Isometric immersions with the same Gauss map. Mathematische Annalen 215, 197–201 (1975)
Ebin, D.: The manifold of Riemannian metrics. Proc. Symposia in Pure Mathematics (AMS) 15, 11–40 (1970)
Gil-Medrano, O., Michor, P.W.: The Riemannian manifold of all Riemannian metrics. Quarterly Journal of Mathematics 42, 183–202 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A. (2012). Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33715-4_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-33715-4_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33714-7
Online ISBN: 978-3-642-33715-4
eBook Packages: Computer ScienceComputer Science (R0)
