Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

European Conference on Computer Vision

ECCV 2012: Computer Vision – ECCV 2012 pp 804–817Cite as

  1. Home
  2. Computer Vision – ECCV 2012
  3. Conference paper
Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields

Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields

  • Ian H. Jermyn21,
  • Sebastian Kurtek22,
  • Eric Klassen23 &
  • …
  • Anuj Srivastava24 
  • Conference paper
  • 9584 Accesses

  • 42 Citations

  • 3 Altmetric

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7576))

Abstract

In this paper we define a new methodology for shape analysis of parameterized surfaces, where the main issues are: (1) choice of metric for shape comparisons and (2) invariance to reparameterization. We begin by defining a general elastic metric on the space of parameterized surfaces. The main advantages of this metric are twofold. First, it provides a natural interpretation of elastic shape deformations that are being quantified. Second, this metric is invariant under the action of the reparameterization group. We also introduce a novel representation of surfaces termed square root normal fields or SRNFs. This representation is convenient for shape analysis because, under this representation, a reduced version of the general elastic metric becomes the simple \(\ensuremath{\mathbb{L}^2}\) metric. Thus, this transformation greatly simplifies the implementation of our framework. We validate our approach using multiple shape analysis examples for quadrilateral and spherical surfaces. We also compare the current results with those of Kurtek et al. [1]. We show that the proposed method results in more natural shape matchings, and furthermore, has some theoretical advantages over previous methods.

Keywords

  • Linear Interpolation
  • Spherical Surface
  • Shape Analysis
  • Surface Graph
  • Riemannian Metrics

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download to read the full chapter text

Chapter PDF

References

  1. Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: Proc. IEEE Computer Vision and Pattern Recognition, pp. 1625–1632 (2010)

    Google Scholar 

  2. Younes, L., Michor, P.W., Shah, J., Mumford, D., Lincei, R.: A metric on shape space with explicit geodesics. Matematica E Applicazioni 19, 25–57 (2008)

    Article  MATH  Google Scholar 

  3. Srivastava, A., Klassen, E., Joshi, S., Jermyn, I.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Analysis and Machine Intelligence 33, 1415–1428 (2011)

    Article  Google Scholar 

  4. Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics LVI, 617–694 (1998)

    MathSciNet  Google Scholar 

  5. Dryden, I.L., Mardia, K.: Statistical Shape Analysis. John Wiley & Son (1998)

    Google Scholar 

  6. Malladi, R., Sethian, J., Vemuri, B.: A fast level set based algorithm for topology-independent shape modeling. Journal of Math. Imag. and Vision 6, 269–290 (1996)

    Article  MathSciNet  Google Scholar 

  7. Gu, X., Wang, S., Kim, J., Zeng, Y., Wang, Y., Qin, H., Samaras, D.: Ricci flow for 3D shape analysis. In: Proc. IEEE Int. Conf. on Computer Vision (2007)

    Google Scholar 

  8. Almhdie, A., Léger, C., Deriche, M., Lédée, R.: 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: Application to medical imaging. Pattern Recognition Letters 28, 1523–1533 (2007)

    Article  Google Scholar 

  9. Bouix, S., Pruessner, J.C., Collins, D.L., Siddiqi, K.: Hippocampal shape analysis using medial surfaces. Neuroimage 25, 1077–1089 (2001)

    Article  Google Scholar 

  10. Gorczowski, K., Styner, M., Jeong, J., Marron, J., Piven, J., Hazlett, H., Pizer, S., Gerig, G.: Multi-object analysis of volume, pose, and shape using statistical discrimination. IEEE Trans. Pattern Analysis and Machine Intelligence 32, 652–666 (2010)

    Article  Google Scholar 

  11. Brechbühler, C., Gerig, G., Kübler, O.: Parameterization of closed surfaces for 3D shape description. Computer Vision and Image Understanding 61, 154–170 (1995)

    Article  Google Scholar 

  12. Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J., Shenton, M., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. In: Proc. MICCAI Open Science Workshop (2006)

    Google Scholar 

  13. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Eurographics State-of-the-Art Report (2010)

    Google Scholar 

  14. Cates, J., Meyer, M., Fletcher, P., Whitaker, R.: Entropy-based particle systems for shape correspondence. In: Proc. MICCAI Mathematical Foundations of Computational Anatomy, pp. 90–99 (2006)

    Google Scholar 

  15. Davies, R., Twining, C., Cootes, T., Taylor, C.: Building 3-d statistical shape models by direct optimization. IEEE Trans. Medical Imaging 29, 961–981 (2010)

    Article  Google Scholar 

  16. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. Journal of Mathematical Imaging and Vision 35, 86–102 (2009)

    Article  MathSciNet  Google Scholar 

  17. Windheuser, T., Schlickewei, U., Schmidt, F.R., Cremers, D.: Geometrically consistent elastic matching of 3d shapes: A linear programming solution. In: Proc. International Conference on Computer Vision, ICCV (2011)

    Google Scholar 

  18. Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. In: Proc. of SIGGRAPH (2006)

    Google Scholar 

  19. Kurtek, S., Klassen, E., Ding, Z., Jacobson, S., Jacobson, J., Avison, M., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans. Medical Imaging 30, 849–858 (2011)

    Article  Google Scholar 

  20. Kurtek, S., Klassen, E., Gore, J., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parametrized surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence (2010)

    Google Scholar 

  21. Kurtek, S., Klassen, E., Ding, Z., Avison, M., Srivastava, A.: Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 147–158. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Gu, X., Vemuri, B.C.: Matching 3D Shapes Using 2D Conformal Representations. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 771–780. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. DeWitt, B.S.: Quantum Theory of Gravity. I. The Canonical Theory. Physical Review 160, 1113–1148 (1967)

    MATH  Google Scholar 

  24. Clarke, B.: The metric geometry of the manifold of Riemannian metrics over a closed manifold. Calculus of Variations and Partial Diff. Equations 39 (2010)

    Google Scholar 

  25. Abe, K., Erbacher, J.: Isometric immersions with the same Gauss map. Mathematische Annalen 215, 197–201 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ebin, D.: The manifold of Riemannian metrics. Proc. Symposia in Pure Mathematics (AMS) 15, 11–40 (1970)

    MathSciNet  Google Scholar 

  27. Gil-Medrano, O., Michor, P.W.: The Riemannian manifold of all Riemannian metrics. Quarterly Journal of Mathematics 42, 183–202 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematical Sciences, Durham University, Durham, England

    Ian H. Jermyn

  2. Department of Statistics, The Ohio State University, Columbus, Ohio, USA

    Sebastian Kurtek

  3. Department of Mathematics, Florida State University, Tallahassee, Florida, USA

    Eric Klassen

  4. Department of Statistics, Florida State University, Tallahassee, Florida, USA

    Anuj Srivastava

Authors
  1. Ian H. Jermyn
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sebastian Kurtek
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Eric Klassen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Anuj Srivastava
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Microsoft Research Ltd., CB3 0FB, Cambridge, UK

    Andrew Fitzgibbon

  2. Dept. of Computer Science, University of North Carolina, 27599, Chapel Hill, NC, USA

    Svetlana Lazebnik

  3. California Institute of Technology, 91125, Pasadena, CA, USA

    Pietro Perona

  4. Institute of Industrial Science, The University of Tokyo, 153-8505, Tokyo, Japan

    Yoichi Sato

  5. INRIA, 38330, Montbonnot, France

    Cordelia Schmid

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A. (2012). Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33715-4_58

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-33715-4_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33714-7

  • Online ISBN: 978-3-642-33715-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature