Skip to main content

A Novel Strategy for Efficient Negotiation in Complex Environments

  • Conference paper
Multiagent System Technologies (MATES 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7598))

Included in the following conference series:

Abstract

A complex and challenging bilateral negotiation environment for rational autonomous agents is where agents negotiate multi-issue contracts in unknown application domains against unknown opponents under real-time constraints. In this paper we present a novel negotiation strategy called EMAR for this kind of environment which is based on a combination of Empirical Mode Decomposition (EMD) and Autoregressive Moving Average (ARMA). EMAR enables a negotiating agent to adjust its target utility and concession rate adaptively in real-time according to the behavior of its opponent. The experimental results show that this new strategy outperforms the best agents from the latest Automated Negotiation Agents (ANAC) Competition in a wide range of application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baarslag, T., Hindriks, K., Jonker, C., Kraus, S., Lin, R.: The First Automated Negotiating Agents Competition (ANAC 2010). In: Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (eds.) New Trends in Agent-Based Complex Automated Negotiations. SCI, vol. 383, pp. 113–135. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Box, G., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice-Hall (1994)

    Google Scholar 

  3. Brzostowski, J., Kowalczyk, R.: Predicting partner’s behaviour in agent negotiation. In: Proceedings of the Fifth Int. Joint Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2006, pp. 355–361. ACM, New York (2006)

    Chapter  Google Scholar 

  4. Carbonneau, R., Kersten, G.E., Vahidov, R.: Predicting opponent’s moves in electronic negotiations using neural networks. Expert Syst. Appl. 34, 1266–1273 (2008)

    Article  Google Scholar 

  5. Chen, S., Weiss, G.: An Efficient and Adaptive Approach to Negotiation in Complex Environments. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), Montpellier, France. IOS Press (2012)

    Google Scholar 

  6. Coehoorn, R.M., Jennings, N.R.: Learning on opponent’s preferences to make effective multi-issue negotiation trade-offs. In: Proceedings of the 6th Int. Conf. on Electronic Commerce, ICEC 2004, pp. 59–68. ACM, New York (2004)

    Google Scholar 

  7. Hunag, N.E., Shen, Z., Long, S.R.: The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. A, 903–995 (1998)

    Google Scholar 

  8. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robotics and Autonomous Systems 24(4), 159–182 (1998)

    Article  Google Scholar 

  9. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in automated negotiations. Artif. Intell. 142(2), 205–237 (2002)

    Article  MathSciNet  Google Scholar 

  10. Flandrin, P., Rilling, G., Gonçalvès, P., Basics, I.E.: Empirical mode decomposition as a filter bank. IEEE Signal Proc. Lett. 11, 112–114 (2004)

    Article  Google Scholar 

  11. Hendrikx, M.: A survey of oppnent models in automated negotiation. Technical report, Delft University of Technology, The Netherlands (September 2011)

    Google Scholar 

  12. Hindriks, K., Jonker, C., Kraus, S., Lin, R., Tykhonov, D.: Genius: negotiation environment for heterogeneous agents. In: Proceedings of AAMAS 2009, pp. 1397–1398 (2009)

    Google Scholar 

  13. Hou, C.: Predicting agents tactics in automated negotiation. In: IEEE / WIC / ACM International Conference on Intelligent Agent Technology, pp. 127–133. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  14. Huang, N.E., Shen, S.S.P.: Hilbert-Huang transform and its applications. World Scientific (2005)

    Google Scholar 

  15. Huang, N.E., Wu, M.-L., Qu, W., Long, S.R., Shen, S.S.P.: Applications of hilbert-huang transform to non-stationary financial time series analysis. Appl. Stoch. Models Bus. Ind. 19(3), 245–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lai, G., Li, C., Sycara, K., Giampapa, J.: Literature review on multi-attribute negotiations. Technical Report CMU-RI-TR-04-66, Robotics Institute, Pittsburgh, PA (December 2004)

    Google Scholar 

  17. Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational agents in environments with incomplete information using an automated agent. Artif. Intell. 172, 823–851 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raiffa, H.: The art and science of negotiation. Harvard University Press, Cambridge (1982)

    Google Scholar 

  19. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saha, S., Biswas, A., Sen, S.: Modeling opponent decision in repeated one-shot negotiations. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 397–403. ACM, New York (2005)

    Chapter  Google Scholar 

  21. Williams, C., Robu, V., Gerding, E., Jennings, N.: Using gaussian processes to optimise concession in complex negotiations against unknown opponents. In: Proceedings of the 22nd Internatioanl Joint Conference on Artificial Intelligence. AAAI Press (2011)

    Google Scholar 

  22. Yu, L., Wang, S., Lai, K.K.: Forecasting crude oil price with an emd-based neural network ensemble learning paradigm. Energy Economics 30(5), 2623–2635 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, S., Weiss, G. (2012). A Novel Strategy for Efficient Negotiation in Complex Environments. In: Timm, I.J., Guttmann, C. (eds) Multiagent System Technologies. MATES 2012. Lecture Notes in Computer Science(), vol 7598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33690-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33690-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33689-8

  • Online ISBN: 978-3-642-33690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics