Skip to main content

Distributed Learning of Best Response Behaviors in Concurrent Iterated Many-Object Negotiations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7598)

Abstract

Iterated negotiations are a well-established method for coordinating distributed activities in multiagent systems. However, if several of these take place concurrently, the participants’ activities can mutually influence each other. In order to cope with the problem of interrelated interaction outcomes in partially observable environments, we apply distributed reinforcement learning to concurrent many-object negotiations. To this end, we discuss iterated negotiations from the perspective of repeated games, specify the agents’ learning behavior, and introduce decentral decision-making criteria for terminating a negotiation. Furthermore, we empirically evaluate the approach in a multiagent resource allocation scenario. The results show that our method enables the agents to successfully learn mutual best response behaviors which approximate Nash equilibrium allocations. Additionally, the learning constrains the required interaction effort for attaining these results.

Keywords

  • Nash Equilibrium
  • Multiagent System
  • Combinatorial Auction
  • Acceptance Level
  • Learning Agent

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berndt, J.O., Herzog, O.: Distributed Reinforcement Learning for Optimizing Resource Allocation in Autonomous Logistics Processes. In: Kreowski, H.-J., Scholz-Reiter, B., Thoben, K.-D. (eds.) LDIC 2012, Bremen (2012)

    Google Scholar 

  2. Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent Reinforcement Learning: An Overview. In: Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems and Applications - 1. SCI, vol. 310, pp. 183–221. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Claus, C., Boutilier, C.: The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems. In: AAAI 1998, Madison, pp. 746–752 (1998)

    Google Scholar 

  4. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  5. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robot. Auton. Syst. 24(3-4), 159–182 (1998)

    CrossRef  Google Scholar 

  6. Foundation for Intelligent Physical Agents: FIPA Iterated Contract Net Interaction Protocol Specification, Standard (2002); document No. SC00030H

    Google Scholar 

  7. Gjerstad, S., Dickhaut, J.: Price Formation in Double Auctions. Game. Econ. Behav. 22(1), 1–29 (1998)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Automated Negotiation: Prospects, Methods and Challenges. Group Decis. Negot. 10, 199–215 (2001)

    CrossRef  Google Scholar 

  9. Kaisers, M., Tuyls, K.: Frequency Adjusted Multiagent Q-learning. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) AAMAS 2010, pp. 309–315. IFAAMAS, Toronto (2010)

    Google Scholar 

  10. Luckhart, C., Irani, K.B.: An Algorithmic Solution of N-Person Games. In: AAAI 1986, vol. 1, pp. 158–162. Morgan Kaufmann, Philadelphia (1986)

    Google Scholar 

  11. Nash, J.: Non-cooperative Games. Ann. Math. 54(2), 286–295 (1950)

    CrossRef  MathSciNet  Google Scholar 

  12. Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a Nash equilibrium. Game. Econ. Behav. 63(2), 642–662 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Ramezani, S., Endriss, U.: Nash Social Welfare in Multiagent Resource Allocation. In: David, E., Gerding, E., Sarne, D., Shehory, O. (eds.) Agent-Mediated Electronic Commerce, pp. 117–131. Springer, Heidelberg (2010)

    Google Scholar 

  14. Richter, J., Klusch, M., Kowalczyk, R.: Monotonic Mixing of Decision Strategies for Agent-Based Bargaining. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS, vol. 6973, pp. 113–124. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  15. Schuldt, A., Berndt, J.O., Herzog, O.: The Interaction Effort in Autonomous Logistics Processes: Potential and Limitations for Cooperation. In: Hülsmann, M., Scholz-Reiter, B., Windt, K. (eds.) Autonomous Cooperation and Control in Logistics, pp. 77–90. Springer, Berlin (2011)

    CrossRef  Google Scholar 

  16. Schuldt, A., Gehrke, J.D., Werner, S.: Designing a Simulation Middleware for FIPA Multiagent Systems. In: Jain, L., Gini, M., Faltings, B.B., Terano, T., Zhang, C., Cercone, N., Cao, L. (eds.) WI-IAT 2008, pp. 109–113. IEEE Computer Society Press, Sydney (2008)

    Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  18. v. Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100, 295–320 (1928)

    Google Scholar 

  19. v. Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    Google Scholar 

  20. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3-4), 279–292 (1992)

    CrossRef  MATH  Google Scholar 

  21. Winoto, P., McCalla, G.I., Vassileva, J.: Non-Monotonic-Offers Bargaining Protocol. Auton. Agent. Multi-Ag. 11, 45–67 (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berndt, J.O., Herzog, O. (2012). Distributed Learning of Best Response Behaviors in Concurrent Iterated Many-Object Negotiations. In: Timm, I.J., Guttmann, C. (eds) Multiagent System Technologies. MATES 2012. Lecture Notes in Computer Science(), vol 7598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33690-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33690-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33689-8

  • Online ISBN: 978-3-642-33690-4

  • eBook Packages: Computer ScienceComputer Science (R0)